Potential theory/Complex analysis
A class of maximal plurisubharmonic functions
Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 858-862.

In this note, we introduce a class of maximal plurisubharmonic functions and use that class to prove some properties of maximal plurisubharmonics functions.

Dans cette note, nous introduisons une classe de fonctions pluri-sous-harmoniques maximales et utilisons celle-ci pour prouver certaines propriétés des fonctions pluri-sous-harmoniques maximales.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.11.003
Do, Hoang-Son 1

1 Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
@article{CRMATH_2019__357_11-12_858_0,
     author = {Do, Hoang-Son},
     title = {A class of maximal plurisubharmonic functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {858--862},
     publisher = {Elsevier},
     volume = {357},
     number = {11-12},
     year = {2019},
     doi = {10.1016/j.crma.2019.11.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.11.003/}
}
TY  - JOUR
AU  - Do, Hoang-Son
TI  - A class of maximal plurisubharmonic functions
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 858
EP  - 862
VL  - 357
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.11.003/
DO  - 10.1016/j.crma.2019.11.003
LA  - en
ID  - CRMATH_2019__357_11-12_858_0
ER  - 
%0 Journal Article
%A Do, Hoang-Son
%T A class of maximal plurisubharmonic functions
%J Comptes Rendus. Mathématique
%D 2019
%P 858-862
%V 357
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.11.003/
%R 10.1016/j.crma.2019.11.003
%G en
%F CRMATH_2019__357_11-12_858_0
Do, Hoang-Son. A class of maximal plurisubharmonic functions. Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 858-862. doi : 10.1016/j.crma.2019.11.003. http://www.numdam.org/articles/10.1016/j.crma.2019.11.003/

[1] Bedford, E.; Taylor, B.A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982) no. 1–2, pp. 1-40

[2] Bedford, E. Survey of pluri-potential theory, Stockholm, 1987/1988 (Math. Notes), Volume vol. 38, Princeton University Press, Princeton, NJ, USA (1993), pp. 48-97

[3] Blocki, Z. The domain of definition of the complex Monge–Ampère operator, Amer. J. Math., Volume 128 (2006) no. 2, pp. 519-530

[4] Blocki, Z. Remark on the definition of the complex Monge–Ampère operator, Functional Analysis and Complex Analysis, Contemp. Math., vol. 481, Amer. Math. Soc., Providence, RI, USA, 2009, pp. 17-21

[5] Cegrell, U. The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 1, pp. 159-179 (in English, with French summary)

[6] Klimek, M. Pluripotential Theory, Oxford University Press, Oxford, UK, 1991

[7] Rashkovskii, A. Maximal plurisubharmonic functions associated with holomorphic mappings, Indiana Univ. Math. J., Volume 47 (1998) no. 1, pp. 297-309

[8] Sadullaev, A. Plurisubharmonic measures and capacities on complex manifolds, Russ. Math. Surv., Volume 36 (1981), pp. 61-119

[9] Walsh, J.B. Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Volume 18 (1968), pp. 143-148

Cited by Sources:

The author was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2017.306.