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In this work, we introduce a two-dimensional domain predator-prey model with strong 
Allee effect and investigate the Turing instability and the phenomena of the emergence 
of patterns. The occurrence of the Turing instability is ensured by the conditions that 
are procured by using the stability analysis of local equilibrium points. The amplitude 
equations (for supercritical case cubic Stuart–Landau equation and for subcritical quintic 
Stuart–Landau equation) are derived appropriate for each case by using the method of 
multiple time scale and show that the system supports patterns like squares, stripes, 
mixed-mode patterns, spots and hexagonal patterns. We obtain the asymptotic solutions 
to the model close to the onset instability based on the amplitude equations. Finally, 
numerically simulations tell how cross-diffusion plays an important role in the emergence 
of patterns.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous introduisons un modèle prédateur–proie dans un domaine de 
dimension deux, avec effet Allee fort. Nous étudions l’instabilité de Turing et le phénomène 
d’émergence de motifs. L’apparition de l’instabilité de Turing est garantie par les conditions 
fournies par l’analyse de la stabilité des points d’équilibre locaux. Les équations d’amplitude 
(une équation de Stuart–Landau cubique dans le cas supercritique et quintique dans le 
cas sous-critique) sont établies en utilisant la méthode des échelles de temps multiples. 
On montre que le système admet des motifs comme des carrés, des bandes, des motifs 
en mode mixte, des taches et des motifs hexagonaux. Nous obtenons les solutions 
asymptotiques du modèle près de l’instabilité, à partir des équations d’amplitude.
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Finalement, les simulations numériques montrent comment la diffusion croisée joue un 
rôle important dans l’apparition de motifs.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Pattern formation has drawn considerable attention from the researchers in the past few decades because of its prime 
importance in the understanding of natural phenomena. In his seminal work, Turing [31] conveyed the idea of studying 
pattern formation with the help of reaction–diffusion systems. Reaction–diffusion models are well-known theoretical mod-
els that explain the self-regulated pattern formation in various areas of biology, chemistry, physics, ecology, geology, and in 
many other fields [6,8,31]. In the field of biology and ecology, the interaction among species and their evolution are sig-
nificant behaviors [14,22,23,25,27,28]. The mathematical model is the key tool to investigate the interaction of species and 
their evolution, so various kinds of models have been studied in the past [3,4,10,11,15,17,18]. According to the ecological 
and biological point of view, the well-studied classic model of interaction among species is the predator-prey model.

According to the theoretical and experimental point of point, cross-diffusion plays an important role in the formation 
of patterns and has been extensively studied [1,32]. The phenomenon of the formation of patterns is commonly observed 
in the physical world ([36]). In the past few decades, many researchers have investigated the emergence of patterns by 
using self-diffusion in reaction–diffusion systems [18,20,24,35,36]. Nowadays, the highlighted topic in the field of dynamical 
systems is the effect of cross-diffusion on the emergence of patterns, and it has been found that with linear reaction terms, 
appropriate cross-diffusion coefficients are sufficient to produce the patterns [1,26,29]. So far, only a few attention has been 
paid to the study of the effect of cross-diffusion. In view of these aforementioned motivations, our aim in this paper is 
to study the formation of patterns in the predator–prey system with the Allee effect with cross-diffusion. More precisely, 
consider a system

∂u

∂t
= ∇ · J1 + γ u(u − β)(1 − u) − uv

∂v

∂t
= ∇ · J2 + uv − δv, (1)

where, a1 and a2 are the self-diffusion coefficients and b1 and b are the cross-diffusion coefficients, which may be zero, 
negative or positive. The term with negative cross-diffusion coefficient represents the fact that one species tends to diffuse 
in the direction of another species of higher concentration. The positive cross-diffusion coefficient represents the species 
movement in the direction of another species of lower concentration. In this work, we assume that the cross-diffusion 
coefficients b1 and b are both non-negative constants. Here, 0 < β < 1 corresponds to the strong Allee effect, the parameter 
γ > 0 and δ > 0. Ji (i = 1, 2) is the flux and obeys non-linear equations as follows:

J1 = ∇[u(a1u + b1 v)]
J2 = ∇[v(a2 v + bu)]. (2)

Here u ≡ u(x, t) and v ≡ v(x, t) are the population densities of prey and predator, respectively at time t and x ∈ � with 
� = [0, Lx] × [0, L y]. For the system (1), Neumann’s boundary conditions are:

n · J1 = n · J2 = 0 when x ∈ ∂�.

The main aim of the paper is to describe the mechanisms of emergence of patterns for the system (1) in the 2D domain 
with homogeneous Neumann boundary conditions. The vital difference with the one-dimensional case is the possibility 
that the bifurcation curve appears via simple or multiple eigenvalues, the 1D case is discussed in [21]. A weakly nonlinear 
analysis is performed close to the bifurcation state by using the multiple scaling analysis, which rules the evolution of the 
amplitude of patterns near the threshold. The comparison among various methods of a weakly non-linear analysis for some 
reaction–diffusion models is studied in [34].

A weakly non-linear multiple scale is used to investigate the amplitude and the pattern of forms, which are closed to the 
bifurcation threshold. In particular, when the homogeneous steady state bifurcates to spatial patterns at a simple eigenvalue, 
we derive the cubic and quintic Stuart–Landau equation that rules the evolution of the amplitude of the most unstable mode 
in the supercritical and subcritical cases, respectively. Square and roll patterns are given for these cases [9]. On the contrary, 
most complex patterns came into existence when double eigenvalues are taken, hexagonal patterns are a particular type of 
mixed-mode patterns, arises for resonance condition.

Bi-stability and hysteresis occurs, the hexagonal patterns of the amplitudes of evaluation system proved that. For all the 
cases under consideration, the solutions to non-linear analysis by comparing with numeric values of the original system are 
close to the threshold.
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By degenerating eigenvalues, Turning bifurcation occurs and the mathematical study involves for it, gives a huge variety 
of patterns, taken as the steady-state solution to the reaction–diffusion system. These are the super squares and the hexagon 
among the rolls, mixed-mode pattern and square.

The reaction–diffusion system close to instability helps us to obtain the amplitude equations (Stuart–Landau equations). 
On analyzing the different patterns of amplitude equations, many phenomena occur, such as stable solution leading to 
hysteresis and stable subcritical Turning pattern. For specific cases, supercritical and subcritical bifurcation gives hexagonal 
mode and rolls, respectively. Therefore, there is a region of bi-stability where both rolls and hexagons are stable; however, 
here rolls appear as a transient state due to a spatially modulated cross-roll instability that drives the solution toward a 
mixed-mode pattern [9]. We achieve partial success in explaining instability due to mode competition.

The organization of this paper is as follows: In Section 2, the stability analysis of the local equilibrium point of system 
(1) is performed and derived, so that cross-diffusion is responsible for the initiation of the emergence of Turing patterns. 
In Section 3, by using a weakly non-linear multiple scale analysis, the amplitude and the form of the patterns close to 
the bifurcation threshold are investigated. When the homogeneous steady state bifurcates to spatial patterns at a simple 
eigenvalue, the cubic and quintic Stuart–Landau equations are derived, which rule the evolution of the amplitude of the 
most unstable mode in the supercritical and subcritical case, respectively.

The complete calculation of the weakly nonlinear stability analysis is presented in the Appendix.

2. Cross-diffusion-driven instability

In this section, we will examine the probability of the emergence of patterns for systems (1) and (2). We know that, if 
the system is stable for the solution to the reaction–diffusion system, then the steady-state system is transformed into an 
unstable one, i.e. has no diffusion terms, but the reaction–diffusion model solution is unstable. In section 2.1, through linear 
stability analysis, we will establish the critical wave number and critical value for the bifurcation parameter. The role of the 
boundary conditions and geometry of the domain is ignored in this process.

In 2.2, we will consider this role to derive the range of unstable wave numbers of permissible patterns scathingly depends 
on the geometry of dominion. This situation is much more involved in the 1D domain taken in ([21]), as dissipation can 
happen.

2.1. Main results on the destabilization mechanism

First, by noticing that 0 < β < 1, one obtains that systems (1) and (2) have a unique spatially uniform positive equilibrium
We investigate the conditions, for reaction systems (1) and (2), under which the interior equilibrium is stable, but the 

reaction–diffusion systems (1) and (2) are unstable.
Firstly, a distinctive spatially uniform positive equilibrium for systems (1) and (2) is obtained, by noticing that 0 < β < 1.

E∗(u0, v0) = (δ,γ (δ − β)(1 − δ)),

if β < δ < 1. Further, it is stable if

(C1) : β + 1

2
< δ < 1.

In the remaining part of this paper, we will always consider that (C1) holds. Now, the linearization of (1) and (2) at 
E∗(u0, v0) is

ẇ = K w + D∇2w, w =
(

u − u0
v − v0

)
(3)

where

K =
( −γ u0[2u0 − (β + 1)] −u0

v0 0

)
, D =

(
2a1u0 + b1 v0 b1u0

bv0 2a2 v0 + bu0

)
. (4)

The following dispersion relation is obtained by considering the solution to system (3) in the form of eikx+λt , where k ≥ 0
is the wave number.

λ2 + [k2 tr(D) − tr(K )]λ + h(k2) = 0, (5)

where

h(k2) = det(D)k4 + qk2 + det(k), (6)

with

q = 2a2γ u0 v0[2u0 − (β + 1)] + b1u0 v0 + bu0[γ u0(2u0 − β − 1) − v0]. (7)
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For having Turning instability and formation of spatial patterns, it is obvious from (5) that there should be a k �= 0 such that, 
for the characteristic equation (5), there must be at least one root greater than zero, i.e. Re(λ) > 0; condition (C1) implies 
that

k2 tr(D) − tr(K ) > 0, ∀ k �= 0.

When h(k2) < 0, the existence of k > 0 is equivalent to the existence of λ, so that Re(λ) > 0.
Next, we will derive the critical wave number, critical values of bifurcation occurrence, and also the conditions implying 

the emergence of spatial patterns. Since h(k2) in terms of k2 and det(D) > 0, is the quadratic equation. Now, the condition 
for the marginal stability from (6) can be obtained as follows,

min(h(k2)) = 0, (8)

where

k2
c = − q

2 det(D)
, (9)

which requires q < 0. In the present study, the presence of the cross-diffusion term b > 0 yields the potential destabilizing 
mechanism, while in the previous studies [35,36] the spatial uniform equilibrium is destabilized due to self-diffusion. If the 
cross-diffusion effect is zero (b = 0), due to the condition C1 the term q in (7) is positive. The term q in (7) in negative, 
when b > 0, which implies

3δ2 − 2(β + 1)δ + β < 0. (10)

For the emergence of patterns, the above condition is the necessary condition. We seek for a critical value at which bifur-
cation occurs by using the cross-diffusion coefficient b and as the bifurcation parameter, which defines

α̃ = u0[v0 − γ u0(2u0 − β − 1)], β̃ = 2a2γ u0 v0[2u0 − (β + 1)] + b1u0 v0,

and let b = β̃

α̃
+ ξ . After substituting b into (8), one can obtain the expression for ξ

α̃2

4 det(K )
ξ2 − 2a1u2

0ξ − [ β̃
α̃

· 2a1u2
0 + 2a2 v0(2a1u0 + b1 v0)] = 0. (11)

Let ξ+ be the positive root of (11); then the value of critical bifurcation is given by:

bc = β̃

α̃
+ ξ+. (12)

The above analysis is summarized by the following theorem.

Theorem 2.1. Let (C1) and (10) hold, then the interior equilibrium point E∗(u0, v0) of equation systems (1) and (2) is unstable when 
b > bc , where bc is represented as in (12).

Remark 2.2. In Fig. 1, we show in β − δ plane the region satisfied by conditions (C1) and (10), see the shaded region, which 
is bounded by the straight line δ = β+1

2 above and by curve 3δ2 − 2(β + 1)δ + β = 0 below and gives the parameter space 
where the spatial patterns may form. Noticing that β stands for the Allee effect and δ for the predator mortality rate, in 
order to admit the formation of spatial patterns, a lower Allee effect allows a larger range of predator mortality rates, and 
a higher Allee effect allows a smaller range, but a larger predator mortality rate.

2.2. Instability bands and degeneracy

When the domain is finite, the condition b > bc is not enough to see a pattern emerging. In this case, in fact, kc might 
not be a mode admissible for the domain and the boundary condition. However, when b > bc, there exists a range (k2

1, k
2
2)

of unstable wavenumbers such that h(k2) < 0 and, correspondingly, Re(λ) > 0, see Fig. 2. It is easy to see that the extremes 
of the interval of unstable wavenumbers, k2

1 and k2
2, where h(k2) = 0. It follows that at least one of the modes allowed by 

the Neumann boundary conditions within the interval [k2
1, k2

2].
In a rectangular domain defined by 0 < x < Lx and 0 < y < L y , the solutions to the linear system (3) with Neumann 

boundary conditions are:

w =
∑

fmneλ(k2
mn)t cos

(mπ

Lx
x
)

cos
(nπ

L y
y
)
, (13)
m,n∈N
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Fig. 1. Allee effect β vs. predator mortality rate δ: the bounded area shows the parameter space where Turing instabilities may occur.

k2
mn =

(mπ

Lx

)2 +
(nπ

L y

)2
, (14)

where fm,n are the Fourier coefficients of the initial conditions; the values λ(k2
mn) are derived from the dispersion relation 

(5). The occurrence of a pattern emerging as t increases, therefore depends on the existence of mode pairs (m, n) such that:

k2
1 < k2 ≡ φ2 + ψ2 < k2

2, where φ ≡ mπ

Lx
, ψ ≡ nπ

L y
, (15)

λ(k2) > 0, (16)

i.e. for b > bc. In what follows, we shall restrict ourselves to the case when there is only one unstable eigenvalue, admissible 
for the Neumann boundary conditions, that falls within the band (k1, k2) in the sense of Eq. (15). We shall denote this 
admissible eigenvalue with k̄c to distinguish from the critical value kc. In a two-dimensional domain, given k̄c ∈ [k1, k2], 
one, two or more pairs (m, n) may exist such that the condition

k̄c
2 = φ2 + ψ2 =

(mπ

Lx

)2 +
(nπ

L y

)2
, (17)

is satisfied and, in this case, the eigenvalue λ will have single, double or higher multiplicity respectively. The multiplicity of 
the eigenvalue, and therefore the type of linear patterns we could expect, strictly depends on the dimensions of the domain 
Lx and L y .

Remark 2.3. It can be easily verified that k2 tr(D) − tr(K ) is positive. We consider b as the parameter of bifurcation and the 
Turing bifurcation threshold for k ≡ kc at b = bc such that min(h(k2)) = 0.

To understand the diffusion-driven instability conditions, Fig. 2 is provided. The pink, brown, and green curves in Fig. 2
tell that the real part of the eigenvalue λ is negative for the parametric values γ = 6, β = 0.6, δ = 0.81, a1 = 0.1, a2 = 0.1
and b1 = 0.01, which shows that the homogenous steady state is stable for heterogenous perturbations. The corresponding 
curves (blue, black) of Fig. 2 tells that the real part of the eigenvalue λ is positive for a certain interval of |k| at which the 
model becomes unstable to heterogenous perturbations and produces Turing patterns, when b > bc is considered. Similarly, 
in Fig. 3, the black, light green and brown curves show that h(k2) > 0, which shows that the homogenous steady state 
is stable for heterogenous perturbations. The corresponding curves (dark green, blue) of Fig. 3 tell that h(k2) < 0 for a 
certain interval of |k| at which the model becomes unstable to heterogenous perturbations and produces Turing patterns, 
when b > bc is considered. However, we cannot determine the Turing patterns selection. Next, we will obtain the amplitude 
equations of Turing patterns near the onset b = bc, which explains the stability of different kinds of Turing patterns as well 
as the structural transitions between them.

3. Weakly nonlinear analysis

This section deals with weakly nonlinear analysis. This analysis is conducted to find the amplitude equations that explain 
the dynamics close to the critical bifurcation state. Newell [16] has introduced the multiple-scale method along with the 
asymptotic analysis of the model that is close to its marginal stability. This method is employed to attain the critical 
bifurcation dynamics of the patterns [7].
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Fig. 2. Different dispersion relations of system (1).

Fig. 3. Plot of h(k2) for different values of b while setting other parameters as γ = 6, β = 0.6, δ = 0.81, a1 = 0.1, a2 = 0.1 and b1 = 0.01.

The amplitude of the patterns evolves close to the threshold based on a slow temporal scale. For this reason, we will 
introduce the scale coordinate that divides the time into two parts, i.e. T = εt is the slow time and t is a fast time, 
respectively, where ε is the control parameter that is used to measure the distance from bifurcation, as shown in (22).

The solution to model (1) can be expressed as an expansion of ε . In addition, the leading-order term can be written as 
a product of the basic pattern and of a gradually changing amplitude (for details, see [12,33]). We will restrict our analysis 
to patterns that are based on time instead of space. Hence, we will not consider the slow spatial scale.

The linear operator can be defined as:

Lb = K + Db∇2, (18)

where K and Db are shown in (4). The bilinear operators based on (x, y) with x ≡ (xu, xv) and y ≡ (yu, yv)are:

QK (x, y) =
(

2γ (β + 1)xu yu − (xu yv + xv yu)

xu yv + xv yu

)
, (19)

Qb
D(x, y) =

(
2a1xu yu + b1(xu yv + xv yu)

2a xv yv + b(xu yv + xv yu)

)
. (20)
2
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Hence, system (1) can be expressed as:

∂tw = Lbw + 1

2
QK (w,w) + 1

2
Qb

D(w,w) +
( −γ (u − u0)

3

0

)
, (21)

where w is given in (3).
Now, the multiple time scales are introduced by:

t = T1

ε
+ T2

ε2
+ T3

ε3
+ T4

ε4
+ · · ·. (22)

The bifurcation parameter b and the solution w can be expanded as:

w = εw1 + ε2w2 + ε3w3 + ε4w4 +O(ε5), (23)

b = bc + εb(1) + ε2b(2) + ε3b(3) + ε4b(4) +O(ε5). (24)

Here, the smallness parameter is defined by expansion (24). Now onward, the critical value bc is used to measure the 
threshold distance. This implies that, if bc �= 0, then b(i) = bc. The linear expression for wi can be obtained by substituting 
(22)–(24) into (1).

O(ε) : Lbc
w1 = 0, (25)

O(ε2) : Lbc
w2 = F = ∂w1

∂T1
− 1

2

(
QK + ∇2Qbc

D

)
(w1,w1) − b(1)

(
0 0
v0 u0

)
∇2w1, (26)

O(ε3) : Lbc
w3 = G = ∂w1

∂T2
+ ∂w2

∂T1
−

(
QK + ∇2Qbc

D

)
(w1,w2) − b(1)∇2

(
0

wu
1wv

1

)

−
(

0 0
v0 u0

)(
b(1)∇2w2 + b(2)∇2w1

) +
(

γ (wu
1)3

0

)
, (27)

O(ε4) : Lbc
w4 = H = ∂w1

∂T3
+ ∂w2

∂T2
+ ∂w3

∂T1
−

(
QK + ∇2Qbc

D

)
(w1,w3) − b(2)∇2

(
0

wu
1wv

1

)

− 1

2

(
QK + ∇2Qbc

D

)
(w2,w2) − b(1)∇2

(
0

wu
1wv

2 + wu
2wv

1

)

−
(

0 0
v0 u0

)(
b(1)∇2w3 + b(2)∇2w2 + b(3)∇2w1

) +
(

3γ (wu
1)2wu

2
0

)
, (28)

O(ε5) : Lbc
w5 = P = ∂w1

∂T4
+ ∂w2

∂T3
+ ∂w3

∂T2
+ ∂w4

∂T1
−

(
QK + ∇2Qbc

D

)
(w1,w4)

−
(
QK + ∇2Qbc

D

)
(w2,w3) −

(
0 0
v0 u0

)(
b(1)∇2w4 + b(2)∇2w3

+ b(3)∇2w2 + b(4)∇2w1
) − b(1)∇2

(
0

wu
1wv

3 + wu
2wv

2 + wu
3wv

1

)

− b(2)∇2
(

0
wu

1wv
2 + wu

2wv
1

)
− b(3)∇2

(
0

wu
1wv

1

)

+
(

3γ [(wu
1)2wu

3 + wu
1(wu

2)2]
0

)
. (29)

The problem (25) hold the Neumann boundary conditions and the solution is represented by:

w1 =
m∑

i=1

Ai(T1, T2)ρ cos(φi x) cos(ψi y), (30)

where m denotes the multiplicity of the eigenvalue, Ai represents the gradually changing amplitudes, while ρ is defined to 
be a constant and can be explicitly expressed by:

ρ ∈ ker(K − k2
c Dbc

), ρ =
(

1
M

)
, with M ≡ −Dbc

21k2
c + K21

Dbc

22k2
c − K22

, (31)

where Dbc

i j and Kij are the i, j-entries of the matrices Dbc
and K .

However, we will restrict the multiplicity to m = 1.
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3.1. Simple eigenvalue, m = 1

For the simple eigenvalue, m = 1, the solution (30) reduces to

w1 = A(T1, T2)ρ cos(φi x) cos(ψi y). (32)

Substituting this expression into the linear equation (26), the vector F is made orthogonal to the kernel of the adjoint of Lbc

simply by imposing T1 = 0 and b(1) = 0; see the details in Appendix A.1.
Substitute the above equation into (26) and let T1 = 0, b(1) = 0 then the vector F is orthogonal to the kernel of adjoint 

of Lbc
. For details, see Appendix A.1. The solution to (26) can be derived (see (39) and substituted at order ε3 in (27). The 

G vector contains the secular terms, represented in (41). By using Fredholm’s solvability condition, the cubic Stuart–Landau 
equation is obtained for the amplitude A(T2):

dA

dT2
= σ A − L A3. (33)

The expressions for σ and L are given in (42) in terms of the parameters of original reaction–diffusion model (1).
Since, the coefficient of σ > 0 and the Landau constant L is either negative or positive, depending on the parametric 

values of the model. According to the Landau constant sign, we deduce the following bifurcation direction:

• the detailed analysis is given in (3.1.1) for the supercritical bifurcation, when L > 0;
• for a subcritical bifurcation, when L < 0, Eq. (33) is not sufficient and we need higher orders. For this, the detailed 

analysis is given in (3.1.2).

3.1.1. The supercritical case
In the supercritical case, both coefficients (σ , L) > 0. In this case, since the coefficients σ and L are both positive, the 

solution to the Stuart–Landau equation changes to the stable stationary state A∞ =
√

σ
L . Further, when b passes bc, we 

assume that k̄c be the first integer, so that A∞ becomes unstable. The above analysis can be summarized by the following 
theorem.

Theorem 3.1. Assume that:

1) ε2 = b−bc

bc is small enough that the uniform steady state (u0, v0) of (1) is unstable for modes corresponding only to the eigenvalue 
k̄c , which is stated as above;

2) there exists only one couple of integers (m, n) such that:

k̄c
2 ≡ φ2 + ψ2 where φ ≡ mπ

Lx
, ψ ≡ nπ

L y
,

3) the Landau coefficient L > 0 in (42).
Then the emerging solution to model (1) is represented by:

w = ερ A∞ cos(φx) cos(ψ y) + O (ε2) (34)

where A∞ is the stable stationary state of the Stuart–Landau equation (33), and ρ is given in (31).

3.1.2. The subcritical case
For specific values of parameters, L (Landau constant) takes a negative value. This is an average case, where the transition 

happens by means of a subcritical bifurcation. Clearly for this situation, Eq. (33) cannot capture the amplitude of the pattern. 
In order to foresee the amplitude of the pattern, weakly nonlinear expansions should be extended to higher order (for details 
see [2]).

Hence, the quintic Stuart–Landau equation for amplitude A can be obtained by performing a weakly nonlinear analysis 
up to O (ε5):

dA

dT2
= σ̄ A − L̄ A3 + Q̄ A5. (35)

For details, see Appendix A.1.1. Hence, we can summarize the results of our WNL analysis in non-degenerate subcritical 
case as follows.
WNL analysis results in the non-degenerate subcritical case.

Let suppose that Theorem (3.1), the hypotheses (1) and (2) hold.

4) L in (42) is negative;
5) the coefficient Q̄ , presented in (48) is positive.



N. Iqbal, R. Wu / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 863–877 871
Fig. 4. Hexagonal patterns occur.

Hence, the solution to our model (1) is represented by:

w = ερ A∞ cos(φx) cos(ψ y) + O (ε), (36)

where ρ is defined in equation (31) and A∞ is the stable stationary state of Eq. (33).
It is vital to see that the coefficient Q̄ = O (ε2). While σ̄ and L̄ are O (1) as it is obvious from (48), one the equilibrium 

A∞ = O (ε−1).

4. Numerical simulation

A numerical simulation is presented to explain the theoretical analysis. In this paper, we use the fractional exponential 
integrator scheme [5,13,19,30] to test our numerical method with a space fractional reaction–diffusion model. Furthermore, 
to assure that Turing patterns are generated, boundary conditions are chosen in the spatial domain in our simulation. All 
simulation run for N = 60. The mathematical software Matlab (2014a) is used to plot the numerical graphs.

Hexagonal patterns exist by choosing the parameters as γ = 6, β = 0.6, δ = 0.81, a1 = 0.1, a2 = 0.1, b1 = 0.01 and 
b = 8.5 with initial perturbation u = 0.2 + 0.01 sin(Y ) cos(X), v = 0.2 + 0.01 sin(X) cos(Y ) with the number of iterations (a) 
T = 40, (b) T = 64, (c) T = 68, and (d) T = 72 (see Fig. 4).

Spot patterns exist by choosing the parameters as γ = 8, β = 0.2, δ = 0.65, a1 = 0.1, a2 = 0.1, b1 = 0.01 and b = 16 with 
initial perturbation u = 0.1 + 0.05 sin(X) cos(Y ) + 0.05 cos(Y ), v = 0.1 + 0.05 sin(Y ) cos(X) + 0.05 cos(X) with the number 
of iterations (a) T = 64, (b) T = 128, (c) T = 232, and (d) T = 280 (see Fig. 5).

Square and spot patterns exist by choosing the parameters as γ = 7, β = 0.2, δ = 0.65, a1 = 0.1, a2 = 0.1, b1 = 0.01 and 
b = 15, with initial perturbation u = 0.1 + 0.05 sin(X) cos(Y ) + 0.05 cos(Y ), v = 0.1 + 0.05 sin(Y ) cos(X) + 0.05 cos(X) with 
the number of iterations (a) T = 64, (b) T = 128, (c) T = 234, and (d) T = 280 (see Fig. 6).

Square patterns exist by choosing the parameters as γ = 4, β = 0.8, δ = 0.9, a1 = 0.1, a2 = 0.1, b1 = 0.01 and b = 12 with 
initial perturbation u = 0.5 + 0.01 sin( Y

2 ) cos( X
2 ), v = 0.05 + 0.03 sin( X

2 ) cos( Y
2 ) with the number of iterations (a) T = 50, (b) 

T = 60, (c) T = 64 and (d) T = 68 (see Fig. 7).
Stripe patterns exist by choosing the parameters as γ = 1, β = 0.1, δ = 0.6, a1 = 0.1, a2 = 0.1, b1 = 0.01 and b = 10 with 

initial perturbation u = 0.01 cos2( X
2 ), v = 0.03 sin2( Y

2 ) with the number of iterations (a) T = 30, (b) T = 50, (c) T = 150, 
and (d) T = 200 (see Fig. 8).
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Fig. 5. Spot patterns occur.

Fig. 6. A mixture of square and spot patterns occurs.
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Fig. 7. Square patterns occur.

Fig. 8. Stripe patterns occur.



874 N. Iqbal, R. Wu / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 863–877
5. Conclusions

This paper deals with the investigation of the Turing mechanism driven by cross-diffusion on a spatial 2D domain with 
strong Allee effect. By means of stability analysis, some conditions ensure the diffusion-driven instability of the system. So 
under such conditions, the system will admit Turing instabilities and different kinds of formed patterns. These are hexagons, 
spots, squares, a mixture of spots and squares, stripes. We have derived the amplitude equations (for the supercritical case, 
the cubic Stuart–Landau equation, and for subcritical case, the quintic Stuart–Landau equation) for the original model (1)
near the onset of instability. The addition of cross-diffusion terms produces very accurate patterns.
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Appendix A. WNL (weakly nonlinear) analysis

The detail calculation of the WNL analysis is given in this appendix.

A.1. Simple eigenvalue

F in (26) can be written as:

F = −1

8
A2

1

2∑
i, j=0 i, j �=1

ζ 1
i j(ρ,ρ) cos(iφ1x) cos( jψ1 y)

+
(

∂ A1

∂T1
ρ + b(1)k̄2

c A1

(
0

u0M + v0

))
cos(φ1x) cos(ψ1 y), (37)

where ζ 1
i j = Q k − (i2φ2

1 + j2ψ2
1 )Q bc

D .
Using Fredholm’s solvability condition, Eq. (26) has a solution if and only if 〈F, Y〉 = 0. Here, 〈., .〉 is the scalar product in 

L2(0, 2π

k̄c
) and the vector Y ∈ ker (Lbc

)† is given by:

Y =
(

1
M∗

)
, M∗ = −Dbc

12k2
c + K12

Dbc

22k2
c − K22

. (38)

By this condition, we find an equation for the amplitude A1(T1, T2) of the following form:

∂ A1

∂T1
= αA1,

where α = − b(1)k̄2
c (u0 M+v0)

1+MM∗ . The above amplitude equation does not indicate anything about the asymptotic behavior of the 
amplitude of patterns.

Hence, the secular terms presented in F can be conquered by imposing T1 = 0 and b(1) = 0 and automatically the 
condition holds. Now, we can calculate the solution to (26) as follows:

w2 = A2
1

2∑
i, j=0 i, j �=1

w2i j cos(iφ1x) cos( jψ1 y), (39)

where w2i j(i, j = 0, 2(i, j �= 1)) are the solutions to the systems:

L1
i jw2i j = −1

8
ζ 1

i j(ρ,ρ), (40)

and the operators L1
i j = K − (i2φ2 + j2ψ2)Dbc

.
At order ε , the G vector is represented by:

G =
(

dA1

dT2
ρ + A1G(1)

11 + A3
1G(3)

11

)
cos(φ1x) cos(ψ1 y) + A3

1G∗, (41)

where the terms of G∗ automatically satisfy the Fredholm solvability condition:
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G∗ = G∗
1 cos(3φ1x) cos(ψ1 y) + G∗

2 cos(φ1x) cos(3ψ1 y) + G∗
3 cos(3φ1x) cos(3ψ1 y),

G∗
1 =

(
1
4γρ3

0

)
− 1

2
ζ 1

31

(
ρ,w220 + 1

2
w220

)
,

G∗
2 =

(
1
4γρ3

0

)
− 1

2
ζ 1

13

(
ρ,w202 + 1

2
w222

)
,

G∗
3 =

(
1
4γρ3

0

)
− 1

4
ζ 1

33

(
ρ,w222

)
.

The vectors G(1)
11 and G(3)

11 read:

G(1)
11 = b(2)k̄2

c

(
0

u0M + v0

)
,

G(3)
11 =

(
3
4γρ3

0

)
− ζ 1

11

(
ρ,w200 + 1

2
w202 + 1

2
w220 + 1

4
w222

)
.

For Eq. (27), the Fredholm solvability condition 〈G, Y〉 = 0 leads to the Stuart–Landau equation (33), where the equations for 
the parameters σ and L are

σ = −〈G(1)
11 ,Y〉

〈ρ,Y〉 , L = 〈G(3)
11 ,Y〉

〈ρ,Y〉 . (42)

A.1.1. The subcritical case
Now, we will provide the detailed calculation for the quintic Stuart–Landau equation (35).
Substituting (22)–(24) into (21), the resulting equations, up to O (ε3) are the same as those given in (A.1).
Taking into account that (33) is still satisfied for amplitude A1, the solvability condition 〈G, Y〉 = 0 for (27) holds and the 

solution is:

w3 = A1w(1)
311 + A3

1

∑
i, j=1,3

w3i j cos(iφ1x) cos( jψ1 y), (43)

where w3i j , i = 1, 3, can be calculated by solving the following systems:

L1
11w(1)

311 = G(1)
11 , L1

11w311 = G(3)
11

L1
31w331 = G∗

1, L1
13w313 = G∗

2, L1
33w333 = G∗

3.

At O (ε4), the resulting equation is (28), where:

H =
∑

i, j=0,2,4

(
A2

1H(1)
i j + A4

1H(2)
i j

)
cos(iφ1x) cos( jψ1 y) + H11 cos(φ1x) cos(ψ1 y), (44)

and

H(1)
00 = 2σw200 − 1

4
ζ

(1)
00 (ρ,w(1)

311),

H00 =
(

3
4γ (2wu

200 + wu
220 + wu

222)

0

)
− 2Lw200 − 1

4
ζ

(1)
00 (ρ,w311)

− 1

2
ζ

(1)
00 (w200,w200) − 1

4
ζ

(1)
00 (w220,w220) − 1

4
ζ

(1)
00 (w202,w202)0

− 1

8
ζ

(1)
00 (w222,w222),

H11 = ∂ A1

∂T3
ρ + b(3) A1k̄2

c

(
0

u0M + v0

)
,

H(1)
20 = 2σw220 − 1

4
ζ

(1)
20 (ρ,w(1)

311) + 2b(2)φ2
1

(
0
M

)
+ 4b(2)φ2

1

(
0 0
v0 u0

)
w220,

H20 =
(

3
2γ (wu

200 + wu
220 + wu

222)

0

)
− 2Lw220 − 1

4
ζ

(1)
20 (ρ,w311 + w331)

− ζ
(1)
20 (w200,w220) − 1

ζ
(1)
20 (w202,w222),
2
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H(1)
02 = 2σw202 − 1

4
ζ

(1)
02 (ρ,w(1)

311) + 2b(2)ψ2
1

(
0
M

)
+ 4b(2)ψ2

1

(
0 0
v0 u0

)
w202,

H02 =
(

3
2γ (wu

200 + wu
220 + wu

222)

0

)
− 2Lw202 − 1

4
ζ

(1)
02 (ρ,w311 + w313)

− ζ
(1)
02 (w200,w202) − 1

2
ζ

(1)
02 (w220,w222),

H(1)
22 = 2σw222 − 1

4
ζ

(1)
22 (ρ,w(1)

311) + 2b(2)k̄2
c

(
0
M

)
+ 4b(2)k̄2

c

(
0 0
v0 u0

)
w222,

H22 = −2Lw222 − 1

4
ζ

(1)
22

(
ρ,

∑
i, j=1,3

w3i j

)
− ζ

(1)
22 (w200,w222) − ζ

(1)
22 (w202,w220),

H40 =
(

3
2γ (wu

220 + wu
222)

0

)
− 1

4

(
ζ

(1)
40 (ρ,w331) + ζ

(1)
40 (w220,w220) + 1

2
ζ

(1)
40

× (w222,w222)

)
,

H04 =
(

3
2γ (wu

202 + +wu
222)

0

)
− 1

4

(
ζ

(1)
04 (ρ,w313) + ζ

(1)
04 (w202,w202) + 1

2
ζ

(1)
04

× (w222,w222)

)
,

H42 =
(

3
4γ (wu

220 + wu
222)

0

)
− 1

4

(
ζ

(1)
42 (ρ,w331 + w333) + 2ζ

(1)
42 (w220,w222)

)
,

H24 =
(

3
4γ (wu

220 + wu
222)

0

)
− 1

4

(
ζ

(1)
24 (ρ,w313 + w333) + 2ζ

(1)
24 (w202,w222)

)
,

H44 =
(

3
4γ wu

222
0

)
− 1

4

(
ζ

(1)
44 (ρ,w333) + 1

2
ζ

(1)
44 (w222,w222)

)
.

The solvability condition for (28) holds by imposing T3 = 0 and b(3) = 0, and the solution is:

w4 = A2
1

∑
i, j=0,2

w(1)
4i j cos(iφ1x) cos( jψ1 y) + A4

1

∑
i, j=0,2,4

w4i j cos(iφ1x) cos( jψ1 y), (45)

where the vectors w4i j , i, j = 0, 2, 4 are the solutions to the following linear systems:

L1
i jw

(1)
4i j = H(1)

i j , L1
i jw4i j = Hi j.

At O (ε5), the resulting equation is given in (29), where:

P =
(

∂ A1

∂T4
ρ + P(1)

11 A1 + P(3)
11 A3

1 + P(5)
11 A5

1

)
cos(φ1x) cos(ψ1 y) + P∗.

In the above equation, P∗ contains terms that automatically satisfy the compatibility condition and:

P(1)
11 = σw(1)

311 + k̄2
c

(
0 0
v0 u0

)(
b(2)w(1)

311 + b(4)ρ

)
,

P(3)
11 =

(
9
4γ wu

311
0

)
− Lw311 + 3σw311 − ζ

(1)
11

(
ρ,w(1)

400 + 1

2
w(1)

420 + 1

2
w(1)

402 + 1

4
w(1)

422

)

− ζ
(1)
11

(
w(1)

200 + 1

2
w(1)

220 + 1

2
w(1)

202 + 1

4
w(1)

222,w(1)
311

)
+ b(2)k̄2

c

(
v200 + v220

2
+ v202

2

+ v222

4
+

(
0
M

)(
u200 + u220

2
+ u202

2
+ u222

4

)) + b(2)k̄2
c

(
0 0
v0 u0

)
w311,

P(5)
11 =

(
3
4γ (3wu

222 + wu
313 + 4(wu

202)
2 + 4wu

202wu
222 + 2(wu

222)
2)

0

)
− 3Lw311 − ζ

(1)
11

(
ρ,w(1)

400

+ 1

2
w(1)

420 + 1

2
w(1)

402 + 1

4
w(1)

422

)
− ζ

(1)
11

(
w(1)

200 + 1

2
w(1)

220 + 1

2
w(1)

202 + 1

4
w(1)

222,w(1)
311

)

− 1
ζ

(1)
11 (w200,w331) − 1

ζ
(1)
11 (w202,w313) − 1

ζ
(1)
11 (w222,w313 + w331 + w333).
2 2 4
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The solvability condition for (29) is

∂ A

∂T4
= σ̃ A − L̃ A3 + Q̃ A5, (46)

where:

σ̃ = −〈P(1)
11 ,Y〉

〈ρ,Y〉 , L̃ = 〈P(3)
11 ,Y〉

〈ρ,Y〉 , Q̃ = −〈P(5)
11 ,Y〉

〈ρ,Y〉 . (47)

By adding (46) to (33), we can find the Stuart–Landau equation (35), where:

σ̄ = σ + ε2σ̃ , L̄ = L + ε2 L̃, Q̄ = ε2 Q̃ . (48)
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