Probability theory/Optimal control
Analysis and computation of probability density functions for a 1-D impulsively controlled diffusion process
Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 306-315.

This paper proposes appropriate boundary conditions to be equipped with Kolmogorov's Forward Equation that governs a stationary probability density function for a 1-D impulsively controlled diffusion process and derives an exact probability density function. The boundary conditions are verified numerically with a Monte Carlo approach. A finite-volume method for solving the equation is also presented and its accuracy is investigated through numerical experiments.

Cette Note propose des conditions aux limites appropriées pour l'équation de Kolmogorov antérograde gouvernant une fonction de densité de probabilité stationnaire d'un processus de diffusion contrôlé par impulsion, en dimension 1. Nous obtenons une fonction de densité de probabilité exacte. La condition aux limites est vérifiée numériquement pour l'approche de Monte Carlo. Nous présentons également une méthode de volumes finis pour résoudre l'équation et nous étudions sa précision au moyen de simulations numériques.

Published online:
DOI: 10.1016/j.crma.2019.02.007
Yaegashi, Yuta 1; Yoshioka, Hidekazu 2; Tsugihashi, Kentaro 2; Fujihara, Masayuki 1

1 Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, 606-8502, Japan
2 Graduate School of Natural Science and Technology, Shimane University, Nishikawatsu-cho 1060, Matsue City, Shimane Prefecture, 690-8504, Japan
     author = {Yaegashi, Yuta and Yoshioka, Hidekazu and Tsugihashi, Kentaro and Fujihara, Masayuki},
     title = {Analysis and computation of probability density functions for a {1-D} impulsively controlled diffusion process},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {306--315},
     publisher = {Elsevier},
     volume = {357},
     number = {3},
     year = {2019},
     doi = {10.1016/j.crma.2019.02.007},
     language = {en},
     url = {}
AU  - Yaegashi, Yuta
AU  - Yoshioka, Hidekazu
AU  - Tsugihashi, Kentaro
AU  - Fujihara, Masayuki
TI  - Analysis and computation of probability density functions for a 1-D impulsively controlled diffusion process
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 306
EP  - 315
VL  - 357
IS  - 3
PB  - Elsevier
UR  -
DO  - 10.1016/j.crma.2019.02.007
LA  - en
ID  - CRMATH_2019__357_3_306_0
ER  - 
%0 Journal Article
%A Yaegashi, Yuta
%A Yoshioka, Hidekazu
%A Tsugihashi, Kentaro
%A Fujihara, Masayuki
%T Analysis and computation of probability density functions for a 1-D impulsively controlled diffusion process
%J Comptes Rendus. Mathématique
%D 2019
%P 306-315
%V 357
%N 3
%I Elsevier
%R 10.1016/j.crma.2019.02.007
%G en
%F CRMATH_2019__357_3_306_0
Yaegashi, Yuta; Yoshioka, Hidekazu; Tsugihashi, Kentaro; Fujihara, Masayuki. Analysis and computation of probability density functions for a 1-D impulsively controlled diffusion process. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 306-315. doi : 10.1016/j.crma.2019.02.007.

[1] Baccarin, S. Optimal impulse control for a multidimensional cash management system with generalized cost functions, Eur. J. Oper. Res., Volume 196 (2009) no. 1, pp. 198-206

[2] Bensoussan, A.; Long, H.; Perera, S.; Sethi, S. Impulse control with random reaction periods: a central bank intervention problem, Oper. Res. Lett., Volume 40 (2012) no. 6, pp. 425-430

[3] Box, G.E.; Muller, M.E. A note on the generation of random normal deviates, Ann. Math. Stat., Volume 29 (1958) no. 2, pp. 610-611

[4] Cadenillas, A. Optimal central bank intervention in the foreign exchange market, J. Econ. Theory, Volume 87 (1999), pp. 218-242

[5] Chen, Z.; Forsyth, P.A. A numerical scheme for the impulse control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB), Numer. Math., Volume 109 (2008) no. 4, pp. 535-569

[6] Federico, S.; Gassiat, P. Viscosity characterization of the value function of an investment-consumption problem in presence of an illiquid asset, J. Optim. Theory Appl., Volume 160 (2014) no. 3, pp. 966-991

[7] Grigoriu, M. Stochastic Calculus: Applications in Science and Engineering, Springer Science & Business Media, 2013

[8] Kloeden, P.E.; Platen, E.; Schurz, H. Numerical Solution of SDE Through Computer Experiments, Springer Science & Business Media, 2012

[9] Korn, R. Portfolio optimisation with strictly positive transaction costs and impulse control, Finance Stoch., Volume 2 (1998) no. 2, pp. 85-114

[10] LeFloch, P.G.; Mercier, J.-M. A new method for solving Kolmogorov equations in mathematical finance, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017) no. 6, pp. 680-686

[11] LeVeque, R.J. Finite Volume Methods for Hyperbolic Problems, vol. 31, Cambridge University Press, 2002

[12] Marpeau, F.; Barua, A.; Josić, K. A finite volume method for stochastic integrate-and-fire models, J. Comput. Neurosci., Volume 26 (2009) no. 3, pp. 445-457

[13] Matsumoto, M.; Nishimura, T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul., Volume 8 (1998) no. 1, pp. 3-30

[14] Miller, J.J.; Wang, S. An exponentially fitted finite volume method for the numerical solution of 2D unsteady incompressible flow problems, J. Comput. Phys., Volume 115 (1994) no. 1, pp. 56-64

[15] Ohnishi, M.; Tsujimura, M. An impulse control of a geometric Brownian motion with quadratic costs, Eur. J. Oper. Res., Volume 168 (2006) no. 2, pp. 311-321

[16] Øksendal, B.; Sulem, A. Optimal consumption and portfolio with both fixed and proportional transaction costs, SIAM J. Control Optim., Volume 40 (2002) no. 6, pp. 1765-1790

[17] Øksendal, B. Stochastic Differential Equations, Springer, 2003

[18] Øksendal, B.; Sulem, A. Applied Stochastic Control of Jump Diffusions, vol. 498, Springer, 2005

[19] Risken, H. The Fokker–Planck Equation, Springer, 1996

[20] Smith, G.D. Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, 1985

[21] Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer Science & Business Media, 2013

[22] Tsujimura, M.; Maeda, A. Stochastic Control: Theory and Applications, Asakura Shoten, 2016 (in Japanese)

[23] Van der Pijl, S.P.; Oosterlee, C.W. An ENO-based method for second order equations and application to the control of dike levels, J. Sci. Comput., Volume 50 (2012) no. 2, pp. 462-492

[24] Yaegashi, Y.; Yoshioka, H.; Unami, K.; Fujihara, M. Impulse and singular stochastic control approaches for population management of a fish-eating bird (Daniele, P.; Scrimali, L., eds.), New Trends in Emerging Complex Real Life Problems, AIRO Springer Series, vol. 1, Springer Nature Switzerland AG, 2018, pp. 493-500 | DOI

[25] Yoshioka, H.; Unami, K. A cell-vertex finite volume scheme for solute transport equations in open channel networks, Probab. Eng. Mech., Volume 31 (2013), pp. 30-38

Cited by Sources: