Partial differential equations
On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains
Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 644-647.

We consider the non-local Fisher–KPP equation on a bounded domain with Neumann boundary conditions. Thanks to a Lyapunov function, we prove that, under a general hypothesis on the kernel involved in the non-local term, the homogenous steady state 1 is globally asymptotically stable. This assumption happens to be linked to some conditions given in the literature, which ensure that travelling waves link 0 to 1.

Nous considérons l'équation de Fisher–KPP non locale en domaine borné, avec conditions de Neumann au bord. À l'aide d'une fonction de Lyapunov, nous montrons que, sous une hypothèse générale sur le noyau présent dans le terme non local, l'état stationnaire 1 est globalement asymptotiquement stable. Cette hypothèse se trouve être reliée à certaines conditions données dans la littérature, qui assurent que les fronts de propagation relient 0 et 1.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.04.016
Pouchol, Camille 1, 2

1 Sorbonne Université, UPMC Université Paris-6, CNRS UMR 7598, Laboratoire Jacques-Louis-Lions, 75005 Paris, France
2 INRIA Team Mamba, INRIA Paris, 2, rue Simone- Iff, CS 42112, 75589 Paris, France
@article{CRMATH_2018__356_6_644_0,
     author = {Pouchol, Camille},
     title = {On the stability of the state 1 in the non-local {Fisher{\textendash}KPP} equation in bounded domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {644--647},
     publisher = {Elsevier},
     volume = {356},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crma.2018.04.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.04.016/}
}
TY  - JOUR
AU  - Pouchol, Camille
TI  - On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 644
EP  - 647
VL  - 356
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.04.016/
DO  - 10.1016/j.crma.2018.04.016
LA  - en
ID  - CRMATH_2018__356_6_644_0
ER  - 
%0 Journal Article
%A Pouchol, Camille
%T On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains
%J Comptes Rendus. Mathématique
%D 2018
%P 644-647
%V 356
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.04.016/
%R 10.1016/j.crma.2018.04.016
%G en
%F CRMATH_2018__356_6_644_0
Pouchol, Camille. On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 644-647. doi : 10.1016/j.crma.2018.04.016. http://www.numdam.org/articles/10.1016/j.crma.2018.04.016/

[1] Alfaro, M.; Coville, J. Rapid traveling waves in the nonlocal Fisher equation connect two unstable states, Appl. Math. Lett., Volume 25 (2012) no. 12, pp. 2095-2099

[2] Berestycki, H.; Nadin, G.; Perthame, B.; Ryzhik, L. The non-local Fisher–KPP equation: travelling waves and steady states, Nonlinearity, Volume 22 (2009) no. 12, p. 2813

[3] Coville, J. Convergence to equilibrium for positive solutions of some mutation–selection model, 2013 (Preprint) | arXiv

[4] Goh, B.S. Global stability in many-species systems, Am. Nat., Volume 111 (1977), pp. 135-143

[5] Hamel, F.; Ryzhik, L. On the nonlocal Fisher–KPP equation: steady states, spreading speed and global bounds, Nonlinearity, Volume 27 (2014) no. 11, p. 2735

[6] Jabin, P.-E.; Raoul, G. On selection dynamics for competitive interactions, J. Math. Biol., Volume 63 (2011) no. 3, pp. 493-517

[7] Kolmogorov, A.N.; Petrovsky, I.G.; Piskunov, N. Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou Sér. Int. A, Volume 1 (1937), pp. 1-26

[8] Nadin, G.; Perthame, B.; Tang, M. Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 9–10, pp. 553-557

[9] Perthame, B. Parabolic Equations in Biology, Springer, 2015

[10] Pouchol, C.; Clairambault, J.; Lorz, A.; Trélat, E. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, J. Math. Pures Appl. (9) (2018) | DOI

[11] Pouchol, C.; Trélat, E. Global stability with selection in integro-differential Lotka–Volterra systems modelling trait-structured populations, 2017 (Preprint) | arXiv

[12] Reed, M.; Simon, B. Methods of Modern Mathematical Physics, vol. II, Academic Press, 1975

Cited by Sources: