Partial differential equations
An Lp-theory for almost sure local well-posedness of the nonlinear Schrödinger equations
[Une théorie Lp pour le problème de Cauchy de l'équation de Schrödinger non linéaire à données initiales aléatoires]
Comptes Rendus. Mathématique, Tome 356 (2018) no. 6, pp. 637-643.

Dans cet article, nous considérons l'équation de Schrödinger non linéaire (NLS) sur Rd à données initiales aléatoires et surcritiques. En travaillant dans des espaces de Lp(Rd), p>2, nous améliorons les résultats précédents de la littérature, en ce sens que nous prouvons que l'équation NLS est localement bien posée presque sûrement pour des données initiales à régularité plus basse. L'ingrédient principal de la preuve est l'estimation dispersive.

We consider the nonlinear Schrödinger equations (NLS) on Rd with random and rough initial data. By working in the framework of Lp(Rd) spaces, p>2, we prove almost sure local well-posedness for rougher initial data than those considered in the existing literature. The main ingredient of the proof is the dispersive estimate.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.04.009
Pocovnicu, Oana 1 ; Wang, Yuzhao 2, 3

1 Department of Mathematics, Heriot-Watt University and The Maxwell Institute for the Mathematical Sciences, Edinburgh, EH14 4AS, United Kingdom
2 School of Mathematics, University of Birmingham, Watson Building, Edgbaston, Birmingham B15 2TT, United Kingdom
3 School of Mathematics, The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
@article{CRMATH_2018__356_6_637_0,
     author = {Pocovnicu, Oana and Wang, Yuzhao},
     title = {An {\protect\emph{L}\protect\textsuperscript{\protect\emph{p}}-theory} for almost sure local well-posedness of the nonlinear {Schr\"odinger} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {637--643},
     publisher = {Elsevier},
     volume = {356},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crma.2018.04.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.04.009/}
}
TY  - JOUR
AU  - Pocovnicu, Oana
AU  - Wang, Yuzhao
TI  - An Lp-theory for almost sure local well-posedness of the nonlinear Schrödinger equations
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 637
EP  - 643
VL  - 356
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.04.009/
DO  - 10.1016/j.crma.2018.04.009
LA  - en
ID  - CRMATH_2018__356_6_637_0
ER  - 
%0 Journal Article
%A Pocovnicu, Oana
%A Wang, Yuzhao
%T An Lp-theory for almost sure local well-posedness of the nonlinear Schrödinger equations
%J Comptes Rendus. Mathématique
%D 2018
%P 637-643
%V 356
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.04.009/
%R 10.1016/j.crma.2018.04.009
%G en
%F CRMATH_2018__356_6_637_0
Pocovnicu, Oana; Wang, Yuzhao. An Lp-theory for almost sure local well-posedness of the nonlinear Schrödinger equations. Comptes Rendus. Mathématique, Tome 356 (2018) no. 6, pp. 637-643. doi : 10.1016/j.crma.2018.04.009. http://www.numdam.org/articles/10.1016/j.crma.2018.04.009/

[1] Bényi, Á.; Oh, T.; Pocovnicu, O. Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in Harmonic Analysis, vol. 4, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2015, pp. 3-25

[2] Bényi, Á.; Oh, T.; Pocovnicu, O. On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on Rd, d3, Trans. Amer. Math. Soc. Ser. B, Volume 2 (2015), pp. 1-50

[3] Bényi, Á.; Oh, T.; Pocovnicu, O. Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on R3 | arXiv

[4] Brereton, J. Almost sure local well-posedness for the supercritical quintic NLS | arXiv

[5] Burq, N.; Tzvetkov, N. Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475

[6] Burq, N.; Tzvetkov, N. Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 1-30

[7] Cazenave, T.; Weissler, F. Some remarks on the nonlinear Schrödinger equation in the critical case, Washington, DC, 1987 (Lect. Notes Math.), Volume vol. 1394, Springer, Berlin (1989), pp. 18-29

[8] Christ, M.; Colliander, J.; Tao, T. Ill-posedness for nonlinear Schrödinger and wave equations | arXiv

[9] Ginibre, J.; Velo, G. Smoothing properties and retarded estimates for some dispersive evolution equations, Commun. Math. Phys., Volume 144 (1992) no. 1, pp. 163-188

[10] Grafakos, L.; Oh, S. The Kato–Ponce inequality, Commun. Partial Differ. Equ., Volume 39 (2014) no. 6, pp. 1128-1157

[11] Hirayama, H.; Okamoto, M. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 12, pp. 6943-6974

[12] Lührmann, J.; Mendelson, D. Random data Cauchy theory for nonlinear wave equations of power-type on R3, Commun. Partial Differ. Equ., Volume 39 (2014) no. 12, pp. 2262-2283

[13] Oh, T. A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkc. Ekvacioj, Volume 60 (2017), pp. 259-277

[14] T. Oh, O. Pocovnicu, Y. Wang, On the stochastic nonlinear Schrödinger equations with non-smooth additive noise, preprint.

[15] Okamoto, M.; Oh, T.; Pocovnicu, O. On the probabilistic well-posedness of the nonlinear Schrödinger equation with non-algebraic nonlinearities | arXiv

[16] Pocovnicu, O. Probabilistic global well-posedness of the energy-critical defocusing cubic nonlinear wave equations on R4, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2321-2375

[17] Tsutsumi, Y. L2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkc. Ekvacioj, Volume 30 (1987) no. 1, pp. 115-125

[18] Vişan, M. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., Volume 138 (2007) no. 2, pp. 281-374

[19] Zhang, T.; Fang, D. Random data Cauchy theory for the generalized incompressible Navier–Stokes equations, J. Math. Fluid Mech., Volume 14 (2012) no. 2, pp. 311-324

[20] Zhou, Y. Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space Ws,p for p<2, Trans. Amer. Math. Soc., Volume 362 (2010) no. 9, pp. 4683-4694

Cité par Sources :