Partial differential equations/Differential geometry
A Serrin-type symmetry result on model manifolds: An extension of the Weinberger argument
Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 648-656.

We consider the classical ‘‘Serrin's symmetry result” for the overdetermined boundary value problem related to the equation Δu=1 in a model manifold of non-negative Ricci curvature. Using an extension of the Weinberger classical argument we prove a Euclidean symmetry result under a suitable ‘‘compatibility” assumption between the solution and the geometry of the model.

Nous considérons le résultat classique de « symétrie de Serrin » pour les problèmes à valeurs à la frontière surdéterminés, pour l'équation Δu=1 sur une variété modèle de courbure de Ricci positive ou nulle. Utilisant une extension de l'argument également classique de Weinberger, nous montrons un résultat de symétrie euclidienne sous une hypothèse de « compatibilité » entre la solution et la géométrie du modèle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.04.012
Roncoroni, Alberto 1

1 Dipartimento di Matematica F. Casorati, Università degli Studi di Pavia, Via Ferrata 5, 27100 Pavia, Italy
@article{CRMATH_2018__356_6_648_0,
     author = {Roncoroni, Alberto},
     title = {A {Serrin-type} symmetry result on model manifolds: {An} extension of the {Weinberger} argument},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {648--656},
     publisher = {Elsevier},
     volume = {356},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crma.2018.04.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.04.012/}
}
TY  - JOUR
AU  - Roncoroni, Alberto
TI  - A Serrin-type symmetry result on model manifolds: An extension of the Weinberger argument
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 648
EP  - 656
VL  - 356
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.04.012/
DO  - 10.1016/j.crma.2018.04.012
LA  - en
ID  - CRMATH_2018__356_6_648_0
ER  - 
%0 Journal Article
%A Roncoroni, Alberto
%T A Serrin-type symmetry result on model manifolds: An extension of the Weinberger argument
%J Comptes Rendus. Mathématique
%D 2018
%P 648-656
%V 356
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.04.012/
%R 10.1016/j.crma.2018.04.012
%G en
%F CRMATH_2018__356_6_648_0
Roncoroni, Alberto. A Serrin-type symmetry result on model manifolds: An extension of the Weinberger argument. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 648-656. doi : 10.1016/j.crma.2018.04.012. http://www.numdam.org/articles/10.1016/j.crma.2018.04.012/

[1] Alessandrini, G.; Magnanini, R. Symmetry and non-symmetry for the overdetermined Stekoff problem II, Nonlinear Problems in Applied Mathematics, SIAM, Philadelphia, PA, USA, 1995

[2] Alexandrov, A.D. Uniqueness theorem for surfaces in large I, Vestn. Leningr. Univ., Math., Volume 11 (1956), pp. 5-17

[3] Caffarelli, L.; Garofalo, N.; Segàla, F. A gradient bound for entire solutions of quasi-linear equations and its consequences, Commun. Pure Appl. Math., Volume 47 (1994), pp. 1457-1473

[4] Ciraolo, G.; Vezzoni, L. A rigidity problem on the round sphere, Commun. Contemp. Math., Volume 19 (2016)

[5] Ciraolo, G.; Vezzoni, L. On Serrin's overdetermined problem in space forms (preprint) | arXiv

[6] Farina, A.; Kawohl, B. Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., Volume 31 (2008), pp. 351-357

[7] Farina, A.; Valdinoci, E. A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, Adv. Math., Volume 225 (2010) no. 5, pp. 2808-2827

[8] Fragalà, I.; Gazzola, F.; Kawohl, B. Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Math. Z., Volume 254 (2006), pp. 117-132

[9] Garofalo, N.; Lewis, J.L. A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., Volume 111 (1989), pp. 9-33

[10] Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979) no. 3, pp. 209-243

[11] Kumaresan, S.; Prajapat, J. Serrin's result for hyperbolic space and sphere, Duke Math. J., Volume 91 (1998), pp. 17-28

[12] Nitsch, C.; Trombetti, C. The classical overdetermined Serrin problem, Complex Var. Elliptic Equ. (2017) | DOI

[13] Payne, L.E. Some remarks on maximum principles, J. Anal. Math., Volume 30 (1976), pp. 421-433

[14] Petersen, P. Riemannian Geometry, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1998

[15] Ros, A. Compact hypersurfaces with constant higher order mean curvature, Rev. Mat. Iberoam., Volume 3 (1987), pp. 447-453

[16] Serrin, J. A symmetry problem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 304-318

[17] Sperb, R.P. Maximum Principles and Their Applications, Mathematics in Science and Engineering, vol. 157, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981

[18] Weinberger, H. Remark on the preceding paper of Serrin, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 319-320

Cited by Sources: