Differential geometry/Mathematical economics
Some characterizations of the quasi-sum production models with proportional marginal rate of substitution
Comptes Rendus. Mathématique, Volume 353 (2015) no. 12, pp. 1129-1133.

In this note we classify quasi-sum production functions with constant elasticity of production with respect to any factor of production and with proportional marginal rate of substitution.

Dans cette note, nous classons les fonctions de production quasi-somme avec élasticité constante de la production par rapport à un facteur de production et avec un taux marginal de substitution proportionnel.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.09.019
Vîlcu, Alina Daniela 1; Vîlcu, Gabriel Eduard 1, 2

1 Petroleum-Gas University of Ploieşti, Bd. Bucureşti 39, Ploieşti 100680, Romania
2 University of Bucharest, Faculty of Mathematics and Computer Science, Str. Academiei 14, Bucharest 70109, Romania
@article{CRMATH_2015__353_12_1129_0,
     author = {V{\^\i}lcu, Alina Daniela and V{\^\i}lcu, Gabriel Eduard},
     title = {Some characterizations of the quasi-sum production models with proportional marginal rate of substitution},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1129--1133},
     publisher = {Elsevier},
     volume = {353},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crma.2015.09.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.09.019/}
}
TY  - JOUR
AU  - Vîlcu, Alina Daniela
AU  - Vîlcu, Gabriel Eduard
TI  - Some characterizations of the quasi-sum production models with proportional marginal rate of substitution
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 1129
EP  - 1133
VL  - 353
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.09.019/
DO  - 10.1016/j.crma.2015.09.019
LA  - en
ID  - CRMATH_2015__353_12_1129_0
ER  - 
%0 Journal Article
%A Vîlcu, Alina Daniela
%A Vîlcu, Gabriel Eduard
%T Some characterizations of the quasi-sum production models with proportional marginal rate of substitution
%J Comptes Rendus. Mathématique
%D 2015
%P 1129-1133
%V 353
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.09.019/
%R 10.1016/j.crma.2015.09.019
%G en
%F CRMATH_2015__353_12_1129_0
Vîlcu, Alina Daniela; Vîlcu, Gabriel Eduard. Some characterizations of the quasi-sum production models with proportional marginal rate of substitution. Comptes Rendus. Mathématique, Volume 353 (2015) no. 12, pp. 1129-1133. doi : 10.1016/j.crma.2015.09.019. http://www.numdam.org/articles/10.1016/j.crma.2015.09.019/

[1] Aczél, J.; Maksa, G. Solution of the rectangular m×n generalized bisymmetry equation and of the problem of consistent aggregation, J. Math. Anal. Appl., Volume 203 (1996), pp. 104-126

[2] Aydin, M.E.; Ergüt, M. A classification of homothetical hypersurfaces in Euclidean spaces via Allen determinants and its applications, Appl. Sci., Volume 17 (2015), pp. 1-8

[3] Aydin, M.E.; Mihai, A. Classification of quasi-sum production functions with Allen determinants, Filomat, Volume 29 (2015) no. 6, pp. 1351-1359

[4] Chen, B.-Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scientific, Hackensack, NJ, USA, 2011

[5] Chen, B.-Y. On some geometric properties of quasi-sum production models, J. Math. Anal. Appl., Volume 392 (2012) no. 2, pp. 192-199

[6] Chen, B.-Y. An explicit formula of Hessian determinants of composite functions and its applications, Kragujev. J. Math., Volume 36 (2012), pp. 1-14

[7] Chen, B.-Y. Solutions to homogeneous Monge–Ampère equations of homothetic functions and their applications to production models in economics, J. Math. Anal. Appl., Volume 411 (2014), pp. 223-229

[8] Fu, Y.; Wang, W.G. Geometric characterizations of quasi-product production models in economics, Filomat (2015) (to be published)

[9] Vîlcu, A.D.; Vîlcu, G.E. On some geometric properties of the generalized CES production functions, Appl. Math. Comput., Volume 218 (2011) no. 1, pp. 124-129

[10] Vîlcu, A.D.; Vîlcu, G.E. On homogeneous production functions with proportional marginal rate of substitution, Math. Probl. Eng., Volume 2013 (2013)

[11] Vîlcu, G.E. A geometric perspective on the generalized Cobb–Douglas production functions, Appl. Math. Lett., Volume 24 (2011) no. 5, pp. 777-783

[12] Wang, X.; Fu, Y. Some characterizations of the Cobb–Douglas and CES production functions in microeconomics, Abstr. Appl. Anal., Volume 2013 (2013)

Cited by Sources: