Differential geometry
There exist no locally symmetric Finsler spaces of positive or negative flag curvature
Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 81-83.

We show that the results of Foulon [5,6] and Kim [7] (independently, of Deng and Hou [4]) about the nonexistence of locally symmetric Finsler metrics of positive or negative flag curvature are in fact local.

Nous montrons que les résultats de Foulon [5,6] et de Kim [7] (et indépendamment, de Deng et Hou [4]) sur l'inexistence de métriques de Finsler localement symétriques, de courbure de drapeau positive ou négative, sont en fait locaux.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.10.022
Matveev, Vladimir S. 1

1 Mathematisches Institut, Friedrich-Schiller Universität Jena, 07737 Jena, Germany
@article{CRMATH_2015__353_1_81_0,
     author = {Matveev, Vladimir S.},
     title = {There exist no locally symmetric {Finsler} spaces of positive or negative flag curvature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {81--83},
     publisher = {Elsevier},
     volume = {353},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crma.2014.10.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.10.022/}
}
TY  - JOUR
AU  - Matveev, Vladimir S.
TI  - There exist no locally symmetric Finsler spaces of positive or negative flag curvature
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 81
EP  - 83
VL  - 353
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.10.022/
DO  - 10.1016/j.crma.2014.10.022
LA  - en
ID  - CRMATH_2015__353_1_81_0
ER  - 
%0 Journal Article
%A Matveev, Vladimir S.
%T There exist no locally symmetric Finsler spaces of positive or negative flag curvature
%J Comptes Rendus. Mathématique
%D 2015
%P 81-83
%V 353
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.10.022/
%R 10.1016/j.crma.2014.10.022
%G en
%F CRMATH_2015__353_1_81_0
Matveev, Vladimir S. There exist no locally symmetric Finsler spaces of positive or negative flag curvature. Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 81-83. doi : 10.1016/j.crma.2014.10.022. http://www.numdam.org/articles/10.1016/j.crma.2014.10.022/

[1] Bao, D.; Robles, C. Ricci and Flag Curvatures in Finsler Geometry, Riemann–Finsler Geometry MSRI Publications, vol. 50, 2004

[2] Bao, D.; Chern, S.S.; Shen, Z. An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, vol. 200, Springer-Verlag Inc., New York, 2000

[3] Chevalley, C. Invariants of finite groups generated by reflections, Amer. J. Math., Volume 77 (1955), pp. 778-782

[4] Deng, S.; Hou, Z. On symmetric Finsler spaces, Isr. J. Math., Volume 162 (2007), pp. 197-219

[5] Foulon, P. Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997) no. 10, pp. 1127-1132

[6] Foulon, P. Curvature and global rigidity in Finsler manifolds, Houst. J. Math., Volume 28 (2002) no. 2, pp. 263-292

[7] Kim, C.-W. Locally symmetric positively curved Finsler spaces, Arch. Math., Volume 880 (2007), pp. 378-384

[8] Matveev, V.S.; Troyanov, M. The Binet–Legendre metric in Finsler geometry, Geom. Topol., Volume 16 (2012), pp. 2135-2170

[9] Palais, R.S.; Terng, C.-L. Critical Point Theory and Submanifold Geometry, Lecture Notes in Mathematics, vol. 1353, Springer-Verlag, New York, 1988

[10] Simons, J. On transitivity of holonomy systems, Ann. of Math. (2), Volume 76 (1962), pp. 213-234

Cited by Sources: