Partial differential equations/Mathematical problems in mechanics
Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 685-690.

The aim of this work is to justify mathematically the derivation of a viscous free/congested zones two-phase model from the isentropic compressible Navier–Stokes equations with a singular pressure playing the role of a barrier.

Le but de cette contribution est de justifier mathématiquement l'obtention d'un modèle biphasique visqueux gérant zones libres/zones congestionnées comme limite singulière des équations de Navier–Stokes compressibles barotropes à l'aide d'une pression singulière jouant le rôle d'une barrière. Ce type de systèmes macroscopiques permettant de modéliser le mouvement d'une foule a été proposé dans de nombreux articles. Le lecteur interessé pourra se reporter, par exemple, à la revue de B. Maury [9].

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.06.009
Bresch, Didier 1; Perrin, Charlotte 1; Zatorska, Ewelina 2, 3

1 Université de Savoie, Laboratoire de mathématiques, UMR CNRS 5127, campus scientifique, 73376 Le Bourget-du-Lac, France
2 Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland
3 CMAP UMR 7641, École polytechnique, CNRS, route de Saclay, 91128 Palaiseau cedex, France
@article{CRMATH_2014__352_9_685_0,
     author = {Bresch, Didier and Perrin, Charlotte and Zatorska, Ewelina},
     title = {Singular limit of a {Navier{\textendash}Stokes} system leading to a free/congested zones two-phase model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {685--690},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.06.009/}
}
TY  - JOUR
AU  - Bresch, Didier
AU  - Perrin, Charlotte
AU  - Zatorska, Ewelina
TI  - Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 685
EP  - 690
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.06.009/
DO  - 10.1016/j.crma.2014.06.009
LA  - en
ID  - CRMATH_2014__352_9_685_0
ER  - 
%0 Journal Article
%A Bresch, Didier
%A Perrin, Charlotte
%A Zatorska, Ewelina
%T Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model
%J Comptes Rendus. Mathématique
%D 2014
%P 685-690
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.06.009/
%R 10.1016/j.crma.2014.06.009
%G en
%F CRMATH_2014__352_9_685_0
Bresch, Didier; Perrin, Charlotte; Zatorska, Ewelina. Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 685-690. doi : 10.1016/j.crma.2014.06.009. http://www.numdam.org/articles/10.1016/j.crma.2014.06.009/

[1] Berthelin, F. Existence and weak stability for a pressureless model with unilateral constraint, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 249-272

[2] Berthelin, F.; Broizat, D. A model for the evolution of traffic jams in multi-lane, Kinet. Relat. Models, Volume 5 (2012) no. 4, pp. 697-728

[3] Carnahan, N.F.; Starling, K.E. Equation of state for nonreacting rigid spheres, J. Chem. Phys., Volume 51 (1969), pp. 635-638

[4] Degond, P.; Hua, J. Self-organized hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., Volume 237 (2013), pp. 299-319

[5] Degond, P.; Hua, J.; Navoret, L. Numerical simulations of the Euler system with congestion constraint, J. Comput. Phys., Volume 230 (2011), pp. 8057-8088

[6] Feireisl, E.; Petzeltová, H.; Rocca, E.; Schimperna, G. Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 7, pp. 1129-1160

[7] Labbé, S.; Maître, E. A free boundary model for Korteweg fluids as a limit of barotropic compressible Navier–Stokes equations, Methods Appl. Anal., Volume 20 (2013) no. 2, pp. 165-177

[8] Lions, P.-L.; Masmoudi, N. On a free boundary barotropic model, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 16 (1999) no. 3, pp. 373-410

[9] B. Maury, Prise en compte de la congestion dans les modèles de mouvements de foules, in: Actes des colloques Caen 2012–Rouen 2011.

[10] C. Perrin, E. Zatorska, A free/congested two-phase model from weak solutions to compressible Navier–Stokes equations, in preparation.

[11] Simon, J. Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65-96

[12] Solonnikov, V.A. The solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 56 (1976), pp. 128-142 (197)

Cited by Sources: