Analyse complexe/Géométrie différentielle
Théorème de Poincaré–Alexander pour les domaines modèles
[Poincaré–Alexander Theorem for model domains]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 353-356.

The Poincaré–Alexander Theorem states that holomorphic mappings defined on an open subset of the unit ball of Cn may, under certain conditions, be extended to a biholomorphism of the unit ball. In a complex manifold, every strongly pseudoconvex homogeneous domain is biholomorphic to the unit ball. In an almost complex manifold, the unit ball is not the only strongly pseudoconvex homogeneous domain. A strongly pseudoconvex homogeneous domain is biholomorphic to a model domain. The aim of this paper is to extend this theorem to model domains.

Le théorème de Poincaré–Alexander stipule quʼune application holomorphe définie sur un ouvert de la boule unité de Cn peut, sous certaines conditions, être prolongée en un biholomorphisme de la boule unité. Dans le cadre presque complexe, la boule unité nʼest plus, à biholomorphisme près, le seul domaine strictement pseudoconvexe et homogène. Un domaine strictement pseudoconvexe et homogène est biholomorphe à un « domaine modèle ». Nous donnons dans cet article une généralisation du théorème de Poincaré–Alexander pour les domaines modèles.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.05.010
Peyron, Marianne 1, 2

1 UJF–Grenoble-1, Institut Fourier, 38402 Grenoble, France
2 CNRS UMR5582, Institut Fourier, 38041 Grenoble, France
@article{CRMATH_2013__351_9-10_353_0,
     author = {Peyron, Marianne},
     title = {Th\'eor\`eme de {Poincar\'e{\textendash}Alexander} pour les domaines mod\`eles},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {353--356},
     publisher = {Elsevier},
     volume = {351},
     number = {9-10},
     year = {2013},
     doi = {10.1016/j.crma.2013.05.010},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.05.010/}
}
TY  - JOUR
AU  - Peyron, Marianne
TI  - Théorème de Poincaré–Alexander pour les domaines modèles
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 353
EP  - 356
VL  - 351
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.05.010/
DO  - 10.1016/j.crma.2013.05.010
LA  - fr
ID  - CRMATH_2013__351_9-10_353_0
ER  - 
%0 Journal Article
%A Peyron, Marianne
%T Théorème de Poincaré–Alexander pour les domaines modèles
%J Comptes Rendus. Mathématique
%D 2013
%P 353-356
%V 351
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.05.010/
%R 10.1016/j.crma.2013.05.010
%G fr
%F CRMATH_2013__351_9-10_353_0
Peyron, Marianne. Théorème de Poincaré–Alexander pour les domaines modèles. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 353-356. doi : 10.1016/j.crma.2013.05.010. http://www.numdam.org/articles/10.1016/j.crma.2013.05.010/

[1] Alexander, H. Holomorphic mappings from the ball and polydisc, Math. Ann., Volume 209 (1974), pp. 249-256

[2] F. Bertrand, L. Blanc-Centi, Stationary holomorphic discs and finite jet determination problems, preprint, 2012.

[3] Byun, J.; Gaussier, H.; Lee, K.H. On the automorphism group of strongly pseudoconvex domains in almost complex manifolds, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 1, pp. 291-310

[4] Fefferman, C. Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. Math. (2), Volume 103 (1976) no. 2, pp. 395-416

[5] Gaussier, H.; Kim, K.T.; Krantz, S.G. A note on the Wong–Rosay theorem in complex manifolds, Complex Var. Theory Appl., Volume 47 (2002) no. 9, pp. 761-768

[6] Gaussier, H.; Sukhov, A. On the geometry of model almost complex manifolds with boundary, Math. Z., Volume 254 (2006) no. 3, pp. 567-589

[7] Han, C.K. Pfaffian systems of Frobenius type and solvability of generic overdetermined PDE systems, Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., Volume 144 (2008), pp. 421-429

[8] Lee, K.H. Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Mich. Math. J., Volume 54 (2006) no. 1, pp. 179-205

[9] Lee, K.H. Strongly pseudoconvex homogeneous domains in almost complex manifolds, J. Reine Angew. Math., Volume 623 (2008), pp. 123-160

[10] Nijenhuis, A.; Woolf, W. Some integration problems in almost-complex and complex manifolds, Ann. Math., Volume 77 (1963) no. 1, pp. 424-489

[11] Peyron, M. Analyticité des applications CR dans des variétés presque-complexes, 2012 | arXiv

[12] Peyron, M. Théorème de Poincaré–Alexander pour les domaines modèles, 2012 | arXiv

[13] Pinčuk, S.I. The analytic continuation of holomorphic mappings, Math. USSR Sb. (N. S.), Volume 98(140) (1975) no. 3(11), pp. 416-435 (495–496)

[14] Pinčuk, S.I. Analytic continuation of mappings along strictly pseudo-convex hypersurfaces, Dokl. Akad. Nauk SSSR, Volume 236 (1977) no. 3, pp. 544-547

[15] Rudin, W. Function Theory in the Unit Ball of Cn, Class. Math., Springer-Verlag, Berlin, 2008 (reprint of the 1980 edition)

[16] Zaitsev, D. Normal forms for nonintegrable almost CR structures, Am. J. Math., Volume 134 (2012) no. 4, pp. 915-947

Cited by Sources: