Partial Differential Equations
Solutions of the Vlasov–Maxwell–Boltzmann system with long-range interactions
Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 357-360.

We establish the existence of renormalized solutions of the Vlasov–Maxwell–Boltzmann system with a defect measure in the presence of long-range interactions. We also present a control of the defect measure by the entropy dissipation only, which turns out to be crucial in the study of hydrodynamic limits.

Nous établissons lʼexistence de solutions renormalisées du système de Vlasov–Maxwell–Boltzmann avec mesure de défaut en présence dʼinteractions à longue portée. Nous présentons également un contrôle de la mesure de défaut par la dissipation dʼentropie uniquement, qui sʼavère être crucial dans lʼétude des limites hydrodynamiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.04.025
Arsénio, Diogo 1; Saint-Raymond, Laure 2

1 Institut de mathématiques, Université Paris-7–Denis-Diderot, Paris, France
2 Département de mathématiques et applications, École normale supérieure, Paris, France
@article{CRMATH_2013__351_9-10_357_0,
     author = {Ars\'enio, Diogo and Saint-Raymond, Laure},
     title = {Solutions of the {Vlasov{\textendash}Maxwell{\textendash}Boltzmann} system with long-range interactions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {357--360},
     publisher = {Elsevier},
     volume = {351},
     number = {9-10},
     year = {2013},
     doi = {10.1016/j.crma.2013.04.025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.04.025/}
}
TY  - JOUR
AU  - Arsénio, Diogo
AU  - Saint-Raymond, Laure
TI  - Solutions of the Vlasov–Maxwell–Boltzmann system with long-range interactions
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 357
EP  - 360
VL  - 351
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.04.025/
DO  - 10.1016/j.crma.2013.04.025
LA  - en
ID  - CRMATH_2013__351_9-10_357_0
ER  - 
%0 Journal Article
%A Arsénio, Diogo
%A Saint-Raymond, Laure
%T Solutions of the Vlasov–Maxwell–Boltzmann system with long-range interactions
%J Comptes Rendus. Mathématique
%D 2013
%P 357-360
%V 351
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.04.025/
%R 10.1016/j.crma.2013.04.025
%G en
%F CRMATH_2013__351_9-10_357_0
Arsénio, Diogo; Saint-Raymond, Laure. Solutions of the Vlasov–Maxwell–Boltzmann system with long-range interactions. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 357-360. doi : 10.1016/j.crma.2013.04.025. http://www.numdam.org/articles/10.1016/j.crma.2013.04.025/

[1] Alexandre, R.; Desvillettes, L.; Villani, C.; Wennberg, B. Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., Volume 152 (2000) no. 4, pp. 327-355

[2] Alexandre, R.; Villani, C. On the Boltzmann equation for long-range interactions, Commun. Pure Appl. Math., Volume 55 (2002) no. 1, pp. 30-70

[3] Arsénio, D. From Boltzmannʼs equation to the incompressible Navier–Stokes–Fourier system with long-range interactions, Arch. Ration. Mech. Anal., Volume 206 (2012) no. 2, pp. 367-488

[4] Arsénio, D.; Masmoudi, N. Regularity of renormalized solutions in the Boltzmann equation with long-range interactions, Commun. Pure Appl. Math., Volume 65 (2012) no. 4, pp. 508-548

[5] Arsénio, D.; Saint-Raymond, L. Compactness in kinetic transport equations and hypoellipticity, J. Funct. Anal., Volume 261 (2011) no. 10, pp. 3044-3098

[6] D. Arsénio, L. Saint-Raymond, From the Vlasov–Maxwell–Boltzmann system to incompressible viscous electro-magneto-hydrodynamics, 2013, in preparation.

[7] Bouchut, F.; Golse, F.; Pulvirenti, M. Kinetic Equations and Asymptotic Theory, Ser. Appl. Math. (Paris), vol. 4, Gauthier-Villars, Éditions Scientifiques et Médicales, Elsevier, Paris, 2000 (Edited and with a foreword by Benoît Perthame and Laurent Desvillettes)

[8] DiPerna, R.J.; Lions, P.-L. Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729-757

[9] DiPerna, R.J.; Lions, P.-L. On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math. (2), Volume 130 (1989) no. 2, pp. 321-366

[10] DiPerna, R.J.; Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547

[11] DiPerna, R.J.; Lions, P.-L. Global solutions of Boltzmannʼs equation and the entropy inequality, Arch. Ration. Mech. Anal., Volume 114 (1991) no. 1, pp. 47-55

[12] Guo, Y. The Vlasov–Maxwell–Boltzmann system near Maxwellians, Invent. Math., Volume 153 (2003) no. 3, pp. 593-630

[13] Lions, P.-L. Compactness in Boltzmannʼs equation via Fourier integral operators and applications. III, J. Math. Kyoto Univ., Volume 34 (1994) no. 3, pp. 539-584

[14] Saint-Raymond, L. Hydrodynamic Limits of the Boltzmann Equation, Lect. Notes Math., vol. 1971, Springer-Verlag, Berlin, 2009

[15] Villani, C. A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam, 2002, pp. 71-305

Cited by Sources: