Harmonic Analysis/Dynamical Systems
Methods of harmonic analysis in nonlinear dynamics
Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 367-370.

For a pair of conjugate trigonometric polynomials C(t)=j=1Najcosjt, S(t)=j=1Najsinjt, normalized by the condition j=1Naj=1, the following extremal value is found:

An application of this result in the control theory for nonlinear discrete systems is shown.

Pour un couple de polynômes trigonométriques C(t)=j=1Najcosjt, S(t)=j=1Najsinjt, normalisés par la condition j=1Naj=1, on a la formule extrémale suivante :

On donne une application de ce résultat en théorie du contrôle à des systèmes non linéaires discrets.

Published online:
DOI: 10.1016/j.crma.2013.05.009
Dmitrishin, Dmitriy 1; Khamitova, Anna 2

1 Odessa National Polytechnic University, 1 Shevchenko Ave., Odessa 65044, Ukraine
2 Georgia Southern University, Statesboro, GA 30460, USA
     author = {Dmitrishin, Dmitriy and Khamitova, Anna},
     title = {Methods of harmonic analysis in nonlinear dynamics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {367--370},
     publisher = {Elsevier},
     volume = {351},
     number = {9-10},
     year = {2013},
     doi = {10.1016/j.crma.2013.05.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.05.009/}
AU  - Dmitrishin, Dmitriy
AU  - Khamitova, Anna
TI  - Methods of harmonic analysis in nonlinear dynamics
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 367
EP  - 370
VL  - 351
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.05.009/
DO  - 10.1016/j.crma.2013.05.009
LA  - en
ID  - CRMATH_2013__351_9-10_367_0
ER  - 
%0 Journal Article
%A Dmitrishin, Dmitriy
%A Khamitova, Anna
%T Methods of harmonic analysis in nonlinear dynamics
%J Comptes Rendus. Mathématique
%D 2013
%P 367-370
%V 351
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.05.009/
%R 10.1016/j.crma.2013.05.009
%G en
%F CRMATH_2013__351_9-10_367_0
Dmitrishin, Dmitriy; Khamitova, Anna. Methods of harmonic analysis in nonlinear dynamics. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 367-370. doi : 10.1016/j.crma.2013.05.009. http://www.numdam.org/articles/10.1016/j.crma.2013.05.009/

[1] Belov, A.S. On properties of non-negative trigonometric polynomials with monotonic coefficients, Vetsn. Ivanovo State Univ., Volume 3 (2001), pp. 109-115 (in Russian)

[2] Chen, G.; Yu, X. Chaos Control, Lect. Notes Control Inf. Sci., vol. 292, 2003

[3] Dmitrishin, D.V.; Khamitova, A.D. Extremal trigonometric polynomials and the problem of optimal stabilization of chaos, 2013 | arXiv

[4] Fejér, L. Über trigonometrische polynome, J. Reine Angew. Math., Volume 146 (1916), pp. 53-82

[5] Morgül, Ö. Further stability results for a generalization of delayed feedback control, Nonlinear Dyn., Volume 70 (2012), pp. 1255-1262

[6] Pólya, G.; Szegö, G. Problems and Theorems in Analysis. II. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, Springer-Verlag, Berlin, 1998

[7] Ushio, T. Limitation of delayed feedback control in nonlinear discrete-time systems, IEEE Trans. Circ. Syst., Volume 43 (1996), pp. 815-816

Cited by Sources: