Differential Geometry/Differential Topology
Quantitative Morse–Sard Theorem via Algebraic Lemma
[Le théorème de Sard quantitatif via le lemme algébrique de Gromov]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 441-443.

Nous donnons une preuve courte du théorème quantitatif de Morse–Sard comme application du lemme algébrique de Gromov.

We give a short proof of the so-called Quantitative Morse–Sard Theorem as an application of Gromovʼs Algebraic Lemma.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.01.019
Burguet, David 1

1 CMLA, ENS Cachan, 61, avenue du Président Wilson, 94230 Cachan, France
@article{CRMATH_2011__349_7-8_441_0,
     author = {Burguet, David},
     title = {Quantitative {Morse{\textendash}Sard} {Theorem} via {Algebraic} {Lemma}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {441--443},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.019/}
}
TY  - JOUR
AU  - Burguet, David
TI  - Quantitative Morse–Sard Theorem via Algebraic Lemma
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 441
EP  - 443
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.01.019/
DO  - 10.1016/j.crma.2011.01.019
LA  - en
ID  - CRMATH_2011__349_7-8_441_0
ER  - 
%0 Journal Article
%A Burguet, David
%T Quantitative Morse–Sard Theorem via Algebraic Lemma
%J Comptes Rendus. Mathématique
%D 2011
%P 441-443
%V 349
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.01.019/
%R 10.1016/j.crma.2011.01.019
%G en
%F CRMATH_2011__349_7-8_441_0
Burguet, David. Quantitative Morse–Sard Theorem via Algebraic Lemma. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 441-443. doi : 10.1016/j.crma.2011.01.019. http://www.numdam.org/articles/10.1016/j.crma.2011.01.019/

[1] Burguet, D. A proof of Yomdin–Gromovʼs algebraic lemma, Israel J. Math., Volume 168 (2008), pp. 291-316

[2] Gromov, M. Entropy, homology and semi-algebraic geometry, Astérisque, Volume 145–146 (1987), pp. 225-240

[3] Ivanov, L.D. Variatsii Mnozhestv i Funktsii (Vituskin, A.G., ed.), Izdat. Nauka, Moscow, 1975 (in Russian)

[4] Pila, J.; Wilkie, A.J. The rational points of a definable set, Duke Mathematical Journal, Volume 133 (2006), pp. 591-616

[5] van den Dries, Lou Tame Topology and O-minimal Structures, Cambridge University Press, 1998

[6] Yomdin, Y. The geometry of critical and near-critical values of differentiable mappings, Math. Ann., Volume 264 (1983), pp. 495-515

[7] Yomdin, Y.; Comte, G. Tame geometry with application in smooth analysis, Lecture Notes in Mathematics, vol. 1834, Springer-Verlag, Berlin, 2004

Cité par Sources :