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r é s u m é

Nous donnons une preuve courte du théorème quantitatif de Morse–Sard comme applica-
tion du lemme algébrique de Gromov.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The classical Morse–Sard Theorem states that the set of critical values of a sufficiently smooth map f : R
n → R

m has
zero Lebesgue measure. Using polynomial approximation and tools of semi-algebraic geometry Y. Yomdin [6] proved a
quantitative version of this result which gives in particular an upper bound on the upper box dimension of the set of
critical values.

In the whole Note the Euclidean spaces R
d with d � 1 are endowed with the usual Euclidean norm. Moreover the norm

of multilinear maps on such Euclidean spaces will be the associated operator norm. When f : ]0,1[n → R
m is a Ck map, we

will consider the map Λi f induced by f on the ith exterior power of R
n with 1 � i � m. The norm of Λi f (x) is the growth

under f of infinitesimal i-volume at x. In particular the n-volume Voln( f (]0,1[n)) of f (]0,1[n) is bounded from above by
‖Λn f ‖∞ . The norm ‖Λi f (x)‖ is also the product of the ith maximal eigenvalues of the square root of the differential map
Dx f . We will denote by ‖ f ‖k the supremum norm of the kth-derivative of f and by �( f , ν) the critical values f (x) of f
such that the rank of the differential map Dx f is less than or equal to ν with 0 � ν < min(m,n).

The ε-entropy M(X, ε) of a subset X of R
m is the minimal cardinality of collections of balls of radius ε covering X . The

upper box dimension dimb(X) of X is then just defined by

dimb(X) = lim sup
ε→0

− log M(X, ε)

ε
.

The main goal of this Note is to provide a short proof of the following Quantitative Morse–Sard Theorem due to Yomdin.
We refer to [7] for further developments around Morse–Sard Theorem, in particular the question of optimality of this
result.
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Theorem 1.1. Let f : ]0,1[n → R
m be a Ck map with k ∈ N \ {0}, then for all 0 � ν < min(n,m)

M
(
ε,�( f , ν)

)
� C

ν∑
j=0

ε− j− n− j
k

‖Λ j f ‖∞

‖ f ‖
n− j

k
k

where C is bounded by a function depending only on n,m,k.1 In particular dimb(�( f , ν)) � ν + n−ν
k .

2. Semi-algebraic tools

A subset A of R
d is said to be semi-algebraic if it can be written as a finite union of polynomial equalities and inequali-

ties. Such a presentation is not necessarily unique. A map f : A ⊂ R
d → R

e is semi-algebraic if its graph is semi-algebraic.
To estimate the algebraic complexity of a semi-algebraic set we define its degree as the minimum over all its presenta-

tions of the sum of the degree of the polynomials (counted with multiplicity) involving in the presentation. The degree of a
semi-algebraic map is the degree of its graph. We will use the following smooth decomposition of semi-algebraic maps:

Lemma 2.1. (See [5, Thm. 3.2, p. 115].) For any semi-algebraic map f : A ⊂ R
n → R

m there exists a partition of A in semi-algebraic
manifolds (A j) j=1,...,N such that f |A j is C 1 for all j = 1, . . . , N. Moreover N and the degree of A j are bounded by a function depending
only on n and the degree of A.

A key tool of our proof is the following C 1 reparametrization theorem also known as Gromov’s Algebraic Lemma. The
Algebraic Lemma bounds the differential complexity of a semi-algebraic set by its algebraic complexity:

Lemma 2.2. (See [2, Lemma 3.3, p. 232].) Let A ⊂ [0,1]n be a semi-algebraic set of dimension l, then there exist semi-algebraic
C 1 embeddings (φi : ]0,1[li → A)i=1,...,N with 0 � li � l (by convention ]0,1[0 is the singleton {0}) such that ‖φi‖1 � 1 and⋃

i φi(]0,1[li ) = A. Moreover N and the degree of the reparametrizations φi are bounded by a function depending only on n and
the degree of A.

We observe that the parametrizations φi are uniformly continuous on open unit squares so that they can be extended
continuously on the closure of these squares.

When n = 1 the lemma is trivial as the connected components of A are just intervals of length less than one which
can be reparametrized by affine contractions (the number of connected components is in this case obviously bounded from
above by the degree of A). Complete proofs of the above lemma can be found in [1] and [4]. The lemma holds also true if
we replace the norm ‖‖1 by maxl=1,...,k ‖‖l for any k.

To compare the ε-entropy and the volume of semi-algebraic sets we will need the following Semi-algebraic Choice. This
result will be only used to prove the Quantitative Morse–Sard Theorem for smooth functions f : R

n → R
m with n larger

than m.

Lemma 2.3. (See [5, Prop. 1.2, p. 94].) Let f : A ⊂ [0,1]n → R
m be a semi-algebraic map, then there exists a semi-algebraic set B ⊂ A

of dimension less than m with f (B) = f (A). Moreover the degree of B is bounded by a function depending only on n, m and the degree
of f .

3. ε-entropy and volume of semi-algebraic sets

We first relate the ε-entropy of images of smooth semi-algebraic maps with their volume. Refinements of such results
can be found in [3].

Lemma 3.1. Let f : ]0,1[n → R
m be a semi-algebraic map which extends continuously on [0,1]n then

M
(
ε, f

([0,1]n))
� C

∑
0�i�m

∑
Ai

Voli
(

f (Ai)
)
ε−i

where the second sum holds over semi-algebraic sets Ai ⊂ [0,1]n of dimension less than m with deg(Ai) � C and �{Ai} � C. Moreover
C is bounded by a function depending only on n,m and the degree of f .

Proof. We argue by induction on n. According to the Algebraic Lemma and Lemma 2.1 one can assume f to be C 1. By
applying the Semi-algebraic Choice we only need to consider the case n � m. Let r(x) be the rank of Dx f . Since the set

1 We do not intend to get estimates of the “universal” constant C (in the following proofs C will always designate some constant depending only on
n,m,k when we do not precise its meaning).
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{x ∈ ]0,1[n, r(x) = k} with 0 � k � n is semi-algebraic one can assume by applying again the Algebraic Lemma that r is

constant on ]0,1[n . Similarly it is enough to consider the case where ‖π ◦ Dx f (u)‖ �
√

r
m ‖Dx f (u)‖ (∗) for all x ∈ ]0,1[n

and for all u ∈ R
n with π the projection on the r first coordinates of R

m . In particular π ◦ f is an open map.
Let O be the union of balls of R

m of radius 3ε covering f (∂[0,1]n) with cardinality M(3ε, f (∂[0,1]n)). Then we consider
a collection U , with minimal cardinality, of balls of radius ε whose union covers f ([0,1]n) \ O . Observe that these balls do
not intersect f (∂[0,1]n). By Vitali’s Covering Lemma, one can extract from U a finite collection V of disjoints balls such
that the balls of radius 3ε at the same centers are covering f ([0,1]n) \ O . In particular we get the following upper bound
M(3ε, f ([0,1]n)) � M(3ε, f (∂[0,1]n)) + �V . Moreover by assumption (∗) the projection of the intersection of any ball B in

U with f (]0,1[n) contains a ball of R
r of radius larger than C−1ε . Therefore Volr(B ∩ f ([0,1]n)) � Volr(π(B ∩ f ([0,1]n))) �

Cεr . Finally we conclude that Volr f (]0,1[n) � Cεr�V and then M(3ε, f ([0,1]n)) � M(3ε, f (∂[0,1]n)) + Cε−r Volr f (]0,1[n).
This concludes the proof by induction as the map f can be smoothly reparametrized on the boundary of [0,1]n from
]0,1[n−1 according to the Algebraic Lemma and Lemma 2.1. �
4. Proof of the Quantitative Morse–Sard Theorem

We divide the unit cube into subcubes of size α := ( ε
‖ f ‖k

)
1
k . We consider such a subcube S and we denote by yS its

left-bottom corner. We set gS = f (α. + yS ). Let P S be the Taylor polynomial of order r of gS at ( 1
2 , . . . , 1

2 ). By Taylor
formula we have

‖gS − P S ‖∞ � ‖gS ‖k � αk‖ f ‖k � ε and similarly ‖D .gS − D . P S ‖∞ � ε (1)

By Lemma 6.2 of [7] we have for all x ∈ ]0,1[n and for all i = 1, . . . ,m (with the convention ‖Λ0 gS ‖ = 1)

∥∥Λi P S (x)
∥∥ � C

i∑
j=0

∥∥Λ j gS (x)
∥∥‖Dx gS − Dx P S ‖i− j (2)

By combining the two last inequalities (1) and (2) we get ‖Λi P S (x)‖ � C
∑i

j=0 ‖Λ j gS (x)‖ε i− j for all x ∈ ]0,1[n and

for all i = 1, . . . ,m. Let A be the intersection
⋂

i=1,...,min(m,n){‖Λi P S ‖∞ � C
∑min(ν,i)

j=0 ‖Λ j gS ‖∞ε i− j} so that �( f |S , ν) is

a subset of the ε-neighborhood of P S (A). We apply the Algebraic Lemma to the semi-algebraic set A. Let (φ j : ]0,1[l j →
A) j=1,...,N be the C 1 semi-algebraic embeddings with ‖φ j‖1 � 1 reparametrizing A. By Lemma 3.1 we get

M
(
2ε,�( f |S , ν)

)
� M

(
ε, P S (A)

)
�

N∑
j=1

M
(
ε, P S ◦ φ j

(]0,1[l j
))

� C
∑
i, j

∥∥Λi(P S ◦ φ j)
∥∥∞ε−i

As ‖φ j‖1 � 1 we have ‖Λi(P S ◦φ j)‖∞ � ‖Λi P S |A‖∞ and it follows from the definition of A that for i = 1, . . . ,min(m,n):

∥∥Λi P S |A
∥∥∞ � C

min(ν,i)∑
j=0

∥∥Λ j gS
∥∥∞ε i− j

Recall now that gS = f (α. + yS ). Therefore Λ j gS = α jΛ j f (α. + yS ) for all j = 1, . . . ,min(m,n). We conclude

M
(
2ε,�( f , ν)

)
� C Nα−n

ν∑
j=0

α jε− j
∥∥Λ j f

∥∥∞ � C
ν∑

j=0

ε− j− n− j
k

‖Λ j f ‖∞

‖ f ‖
n− j

k
k

Remark. When m = 1 the proof is very easy. Indeed the maps P S ◦ φ j have derivative less than ε and their image is then
an interval of length less than ε . Therefore in this case M(2ε,�( f , ν)) is directly bounded from above by the number of
such maps. In particular we do not need to use Lemma 3.1.
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