Partial Differential Equations
Expansion of the Green's function for divergence form operators
[Expansion de la fonction de Green pour les opérateurs de type divergence]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 15-16, pp. 891-896.

On considère la solution fondamentale Ga de l'opérateur Δa=1a(x)div(a(x)), sur un domaine borné régulier ΩRn (n2) avec les conditions de Dirichlet au bord, ici a est une fonction régulière et strictement positive sur Ω¯. Dans cette Note, on donne une description précise de la fonction Ga(x,y). On définit notamment Ha(x,y), la partie continue de Ga et on montre que la fonction de Robin correspondante Ra(x)=Ha(x,x) est dans C(Ω), sachant que HaC1(Ω×Ω) en général.

We consider the fundamental solution Ga of the operator Δa=1a(x)div(a(x)) on a bounded smooth domain ΩRn (n2), associated to the Dirichlet boundary condition, where a is a positive smooth function on Ω¯. In this short Note, we give a precise description of the function Ga(x,y). In particular, we define in a unique way its continuous part Ha(x,y) and we prove that the corresponding Robin's function Ra(x)=Ha(x,x) belongs to C(Ω), although HaC1(Ω×Ω) in general.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.06.024
Khenissy, Saïma 1 ; Rébaï, Yomna 2 ; Ye, Dong 3

1 Département de mathématiques appliquées, institut supérieur d'informatique, 2037 Ariana, Tunisia
2 Département de mathématiques, faculté des sciences de Bizerte, Jarzouna, 7021 Bizerte, Tunisia
3 LMAM, UMR 7122, Université de Metz, 57045 Metz, France
@article{CRMATH_2010__348_15-16_891_0,
     author = {Khenissy, Sa{\"\i}ma and R\'eba{\"\i}, Yomna and Ye, Dong},
     title = {Expansion of the {Green's} function for divergence form operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {891--896},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.06.024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.06.024/}
}
TY  - JOUR
AU  - Khenissy, Saïma
AU  - Rébaï, Yomna
AU  - Ye, Dong
TI  - Expansion of the Green's function for divergence form operators
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 891
EP  - 896
VL  - 348
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.06.024/
DO  - 10.1016/j.crma.2010.06.024
LA  - en
ID  - CRMATH_2010__348_15-16_891_0
ER  - 
%0 Journal Article
%A Khenissy, Saïma
%A Rébaï, Yomna
%A Ye, Dong
%T Expansion of the Green's function for divergence form operators
%J Comptes Rendus. Mathématique
%D 2010
%P 891-896
%V 348
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.06.024/
%R 10.1016/j.crma.2010.06.024
%G en
%F CRMATH_2010__348_15-16_891_0
Khenissy, Saïma; Rébaï, Yomna; Ye, Dong. Expansion of the Green's function for divergence form operators. Comptes Rendus. Mathématique, Tome 348 (2010) no. 15-16, pp. 891-896. doi : 10.1016/j.crma.2010.06.024. http://www.numdam.org/articles/10.1016/j.crma.2010.06.024/

[1] Bahri, A.; Li, Y.; Rey, O. On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations, Volume 3 (1995), pp. 67-93

[2] Bandle, C.; Flucher, M. Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations ΔU=eU and ΔU=U(n+2)/(n2), SIAM Rev., Volume 38 (1996) no. 2, pp. 191-238

[3] Bartolucci, D.; Orsina, L. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates, Commun. Pure Appl. Anal., Volume 4 (2005) no. 3, pp. 499-522

[4] Chanillo, S.; Li, Y. Continuity of solutions of uniformly elliptic equations in R2, Manuscripta Math., Volume 77 (1992), pp. 415-433

[5] Del Pino, M.; Felmer, P.L. Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., Volume 149 (1997) no. 1, pp. 245-265

[6] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer, 2001

[7] Grüter, M.; Widman, K.O. The Green function for uniformly elliptic equations, Manuscripta Math., Volume 37 (1982) no. 3, pp. 303-342

[8] Han, Z.C. Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Anal. Inst. Poincaré Anal. Nonlin., Volume 8 (1991), pp. 159-174

[9] Kenig, C.E.; Ni, W.M. On the elliptic equation Luk+Kexp[2u]=0, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 12 (1985), pp. 191-224

[10] Littman, W.; Stampacchia, G.; Weinberger, H.F. Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa, Volume 17 (1963), pp. 43-77

[11] Maz'ya, V.; McOwen, R. On the fundamental solution of an elliptic equation in nondivergence form, 2008 | arXiv

[12] Nagasaki, K.; Suzuki, T. Asymptotic analysis for two-dimensional elliptic eigenvalue problem with exponentially dominated nonlinearities, Asymptot. Anal., Volume 3 (1990), pp. 173-188

[13] Rébaï, Y. Study of the singular Yamabe problem in some bounded domain of Rn, Adv. Nonlinear Stud., Volume 6 (2006), pp. 437-460

[14] Rey, O. The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990) no. 1, pp. 1-52

[15] Schoen, R. Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495

[16] Wei, J.; Ye, D.; Zhou, F. Bubbling solutions for an anisotropic Emden–Fowler equation, Calc. Var. Partial Differential Equations, Volume 28 (2007), pp. 217-247

Cité par Sources :