Partial Differential Equations
Continuous spectrum of the 3D Euler equation is a solid annulus
[Le spectre continu de l'equation d'Euler 3D est un anneau]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 15-16, pp. 897-900.

On donne dans cette Note une description du spectre continu de l'équation d'Euler linearisée en dimension 3. Précisément, pour presque tout tR, le spectre continu de l'opérateur d'évolution Gt est constitué d'un anneau de rayons etμ et etM, où μ et M sont, respectivement, le plus petit et le plus grand exposant de Lyapunov du système d'EDO bicaractéristique-amplitude associé.

In this Note we give a description of the continuous spectrum of the linearized Euler equations in three dimensions. Namely, for all but countably many times tR, the continuous spectrum of the evolution operator Gt is given by a solid annulus with radii etμ and etM, where μ and M are the smallest and largest, respectively, Lyapunov exponents of the corresponding bicharacteristic-amplitude system of ODEs.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.009
Shvydkoy, Roman 1

1 Department of Mathematics, Statistics and Computer Science, 851 S. Morgan St., M/C 249, University of Illinois at Chicago, Chicago, IL 60607, United States
@article{CRMATH_2010__348_15-16_897_0,
     author = {Shvydkoy, Roman},
     title = {Continuous spectrum of the {3D} {Euler} equation is a solid annulus},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {897--900},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.07.009/}
}
TY  - JOUR
AU  - Shvydkoy, Roman
TI  - Continuous spectrum of the 3D Euler equation is a solid annulus
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 897
EP  - 900
VL  - 348
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.07.009/
DO  - 10.1016/j.crma.2010.07.009
LA  - en
ID  - CRMATH_2010__348_15-16_897_0
ER  - 
%0 Journal Article
%A Shvydkoy, Roman
%T Continuous spectrum of the 3D Euler equation is a solid annulus
%J Comptes Rendus. Mathématique
%D 2010
%P 897-900
%V 348
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.07.009/
%R 10.1016/j.crma.2010.07.009
%G en
%F CRMATH_2010__348_15-16_897_0
Shvydkoy, Roman. Continuous spectrum of the 3D Euler equation is a solid annulus. Comptes Rendus. Mathématique, Tome 348 (2010) no. 15-16, pp. 897-900. doi : 10.1016/j.crma.2010.07.009. http://www.numdam.org/articles/10.1016/j.crma.2010.07.009/

[1] Bayly, B.J. Three-dimensional instability of elliptical flow, Phys. Rev. Lett., Volume 57 (1986) no. 17, pp. 2160-2163

[2] Browder, F.E. On the spectral theory of elliptic differential operators. I, Math. Ann., Volume 142 (1960/1961), pp. 22-130

[3] Friedlander, S.; Vishik, M.M. Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., Volume 66 (1991) no. 17, pp. 2204-2206

[4] Latushkin, Y.; Vishik, M. Linear stability in an ideal incompressible fluid, Comm. Math. Phys., Volume 233 (2003) no. 3, pp. 439-461

[5] Lifschitz, A.; Hameiri, E. Local stability conditions in fluid dynamics, Phys. Fluids A, Volume 3 (1991) no. 11, pp. 2644-2651

[6] Nussbaum, R.D. The radius of the essential spectrum, Duke Math. J., Volume 37 (1970), pp. 473-478

[7] Orszag, S.A.; Patera, A.T. Subcritical transition to turbulence in plane channel flows, Phys. Rev. Lett., Volume 45 (1980), pp. 989-993

[8] Pierrehumbert, R.T. Universal short-wave instability of two-dimensional eddies in an inviscid fluid, Phys. Rev. Lett., Volume 57 (1986), pp. 2157-2159

[9] Sacker, R.J.; Sell, G.R. A spectral theory for linear differential systems, J. Differential Equations, Volume 27 (1978) no. 3, pp. 320-358

[10] Shvydkoy, R. The essential spectrum of advective equations, Comm. Math. Phys., Volume 265 (2006) no. 2, pp. 507-545

[11] Shvidkoy, R.; Latushkin, Y. The essential spectrum of the linearized 2D Euler operator is a vertical band, Birmingham, AL, 2002 (Contemp. Math.), Volume vol. 327, Amer. Math. Soc., Providence, RI (2003), pp. 299-304

[12] Shvidkoy, R.; Latushkin, Y. Operator algebras and the Fredholm spectrum of advective equations of linear hydrodynamics, J. Funct. Anal., Volume 257 (2009), pp. 3309-3328

[13] Steenrod, N. The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, NJ, 1951

[14] Vishik, M. Spectrum of small oscillations of an ideal fluid and Lyapunov exponents, J. Math. Pures Appl. (9), Volume 75 (1996) no. 6, pp. 531-557

Cité par Sources :