Mathematical Analysis
Decomposition of S1-valued maps in Sobolev spaces
[Décomposition des applications unimodulaires dans les espaces de Sobolev]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 13-14, pp. 743-746.

Soient n2, s>0, p1 tels que 1sp<2. Nous montrons que, pour chaque uWs,p(Sn;S1), il existe φWs,p(Sn;R) et vWsp,1(Sn;S1) tels que u=veıφ. Ceci donne une décomposition de u comme produit d'un facteur qui se relève dans Ws,p, eıφ, et d'un facteur « plus régulier » que u mais qui ne se relève pas, à savoir v. Notre décomposition généralise un résultat antérieur de Bourgain et Brezis (qui ont traité le cas s=1/2, p=2). Une conséquence de notre résultat est une preuve intuitive de l'existence du jacobien au sens des distributions Ju pour les applications uWs,p(Sn;S1) (résultat dû, avec un argument différent, à Bourgain, Brezis et l'auteur). En complétant un résultat de Bousquet, nous caractérisons les distributions de la forme Ju.

Let n2, s>0, p1 be such that 1sp<2. We prove that for each map uWs,p(Sn;S1) one can find φWs,p(Sn;R) and vWsp,1(Sn;S1) such that u=veıφ. This yields a decomposition of u into a part that has a lifting in Ws,p, eıφ, and a map “smoother” than u but without lifting, namely v. Our result generalizes a previous one of Bourgain and Brezis (which corresponds to the case s=1/2, p=2). As a consequence, we find an intuitive proof for the existence of the distributional Jacobian Ju of maps uWs,p(Sn;S1) (originally due to Bourgain, Brezis and the author). By completing a result of Bousquet, we characterize the distributions of the form Ju.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.06.020
Mironescu, Petru 1

1 Université de Lyon, CNRS, Université Lyon 1, Institut Camille-Jordan, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
@article{CRMATH_2010__348_13-14_743_0,
     author = {Mironescu, Petru},
     title = {Decomposition of $ {\mathbb{S}}^{1}$-valued maps in {Sobolev} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {743--746},
     publisher = {Elsevier},
     volume = {348},
     number = {13-14},
     year = {2010},
     doi = {10.1016/j.crma.2010.06.020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.06.020/}
}
TY  - JOUR
AU  - Mironescu, Petru
TI  - Decomposition of $ {\mathbb{S}}^{1}$-valued maps in Sobolev spaces
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 743
EP  - 746
VL  - 348
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.06.020/
DO  - 10.1016/j.crma.2010.06.020
LA  - en
ID  - CRMATH_2010__348_13-14_743_0
ER  - 
%0 Journal Article
%A Mironescu, Petru
%T Decomposition of $ {\mathbb{S}}^{1}$-valued maps in Sobolev spaces
%J Comptes Rendus. Mathématique
%D 2010
%P 743-746
%V 348
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.06.020/
%R 10.1016/j.crma.2010.06.020
%G en
%F CRMATH_2010__348_13-14_743_0
Mironescu, Petru. Decomposition of $ {\mathbb{S}}^{1}$-valued maps in Sobolev spaces. Comptes Rendus. Mathématique, Tome 348 (2010) no. 13-14, pp. 743-746. doi : 10.1016/j.crma.2010.06.020. http://www.numdam.org/articles/10.1016/j.crma.2010.06.020/

[1] Alberti, G.; Baldo, S.; Orlandi, G. Functions with prescribed singularities, J. Eur. Math. Soc., Volume 5 (2003) no. 3, pp. 275-311

[2] Ball, J.M. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403

[3] Bethuel, F.; Zheng, X. Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75

[4] Bourgain, J.; Brezis, H. On the equation divY=f and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426

[5] Bourgain, J.; Brezis, H.; Mironescu, P. Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86

[6] Bourgain, J.; Brezis, H.; Mironescu, P. H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études Sci., Volume 99 (2004), pp. 1-115

[7] Bousquet, P. Topological singularities in Ws,p(SN,S1), J. Anal. Math., Volume 102 (2007), pp. 311-346

[8] P. Bousquet, P. Mironescu, in preparation

[9] Brezis, H.; Coron, J.-M.; Lieb, E. Harmonic maps with defects, Comm. Math. Phys., Volume 107 (1986) no. 4, pp. 649-705

[10] Brezis, H.; Mironescu, P. Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001), pp. 387-404

[11] Brezis, H.; Mironescu, P.; Ponce, A. W1,1-maps with values into S1 (Chanillo, S.; Cordaro, P.D.; Hanges, N.; Hounie, J.; Meziani, A., eds.), Geometric Analysis of PDE and Several Complex Variables, Contemporary Mathematics, vol. 368, Amer. Math. Soc., Providence, RI, 2005, pp. 69-100

[12] Jerrard, R.L.; Soner, H.M. Functions of bounded higher variation, Indiana Univ. Math. J., Volume 51 (2002), pp. 645-677

[13] Maz'ya, V.; Shaposhnikova, T. An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ., Volume 2 (2002) no. 1, pp. 113-125

[14] Mironescu, P. Lifting default for S1-valued maps, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 19–20, pp. 1039-1044

[15] Mironescu, P. S1-valued Sobolev maps http://math.univ-lyon1.fr/~mironescu/7.pdf

[16] P. Mironescu, Sobolev spaces of circle-valued maps, in preparation

[17] Morrey, C.B. Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, vol. 130, Springer-Verlag New York, Inc., New York, 1966

[18] Nguyen, H.-M. Inequalities related to liftings and applications, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 17–18, pp. 957-962

[19] Reshetnyak, Y.G. The weak convergence of completely additive vector-valued set functions, Sibirsk. Mat. Zh., Volume 9 (1968), pp. 1386-1394

Cité par Sources :