Decomposition of \mathbb{S}^{1}-valued maps in Sobolev spaces

Décomposition des applications unimodulaires dans les espaces de Sobolev

Petru Mironescu

Université de Lyon, CNRS, Université Lyon 1, Institut Camille-Jordan, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France

A R T I C L E I N F O

Article history:

Received 22 June 2010
Accepted 23 June 2010
Available online 10 July 2010
Presented by Haïm Brezis

Abstract

Let $n \geqslant 2, s>0, p \geqslant 1$ be such that $1 \leqslant s p<2$. We prove that for each map $u \in$ $W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ one can find $\varphi \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{R}\right)$ and $v \in W^{s p, 1}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ such that $u=v e^{i \varphi}$. This yields a decomposition of u into a part that has a lifting in $W^{s, p}, e^{i \varphi}$, and a map "smoother" than u but without lifting, namely v. Our result generalizes a previous one of Bourgain and Brezis (which corresponds to the case $s=1 / 2, p=2$). As a consequence, we find an intuitive proof for the existence of the distributional Jacobian $J u$ of maps $u \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ (originally due to Bourgain, Brezis and the author). By completing a result of Bousquet, we characterize the distributions of the form $J u$. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Soient $n \geqslant 2, s>0, p \geqslant 1$ tels que $1 \leqslant s p<2$. Nous montrons que, pour chaque $u \in$ $W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$, il existe $\varphi \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{R}\right)$ et $v \in W^{s p, 1}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ tels que $u=v e^{i \varphi}$. Ceci donne une décomposition de u comme produit d'un facteur qui se relève dans $W^{s, p}, e^{\imath \varphi}$, et d'un facteur «plus régulier» que u mais qui ne se relève pas, à savoir v. Notre décomposition généralise un résultat antérieur de Bourgain et Brezis (qui ont traité le cas $s=1 / 2, p=2$). Une conséquence de notre résultat est une preuve intuitive de l'existence du jacobien au sens des distributions $J u$ pour les applications $u \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ (résultat dû, avec un argument différent, à Bourgain, Brezis et l'auteur). En complétant un résultat de Bousquet, nous caractérisons les distributions de la forme Ju.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Decomposition of $\mathbb{S}^{\mathbf{1}}$-valued maps

Our main result is the following:
Theorem 1. Let $n \geqslant 2, s>0, p \geqslant 1$ be such that $1 \leqslant s p<2$. Let $u \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$. Then there exist $\varphi \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{R}\right)$ and $v \in$ $W^{s p, 1}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ such that $u=v e^{\imath \varphi}$.

In addition, we have (with $|\cdot| W^{r, q}$ standing for the semi-norm given by the highest order term in $\|\cdot\|_{W^{r, q}}$)

$$
\begin{equation*}
|\varphi|_{W^{s, p}} \lesssim|u|_{W^{s, p}},|v|_{W^{s p, 1}} \lesssim|u|_{W^{s, p}}^{p} \tag{1}
\end{equation*}
$$

[^0]The special case $s=1 / 2, p=2$ of Theorem 1 is due to Bourgain and Brezis [4]. (In [4], u is supposed to be in the $H^{1 / 2}$-closure of $C^{\infty}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$. This extra assumption was removed in [6].) In Theorem $1, \mathbb{S}^{n}$ does not play special role; one could replace, e.g., \mathbb{S}^{n} by any smooth bounded simply connected domain. Theorem 1 yields a satisfactory substitute to the lifting theory in $W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$, theory developed successively in [5,18] and [14]. As proved in these papers, when $n \geqslant 2$ and $s p \notin[1,2)$, one may characterize maps $u \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ in terms of their liftings. (For a precise statement, we refer to [15], Theorem 6.1, p. 15.) However, when $1 \leqslant s p<2$, there is no satisfactory description of maps in terms of their phases. A typical example is the map $\mathbb{C} \ni z \mapsto z /|z|$, which belongs to $W^{s, p}(B(0,1))$ when $s p<2$, but does not have a phase better than $z \mapsto \arg z$, which merely belongs to BV. Our result allows to decompose u into two parts, one as smooth as u and which admits a lifting in $W^{s, p}$, the other one without lifting in $W^{s, p}$, but "smoother" than u. In Theorem 1, one cannot replace $W^{s, p}$ (for φ) or $W^{s p, 1}$ (for v) by smaller Sobolev spaces.

The proof of Theorem 1 is constructive: there is an explicit formula giving φ. Part of the proof is inspired by similar constructions of Bourgain and Brezis [4] and of the author [14]. We describe the main lines of the proof when $s<1$ and $1 \leqslant s p<2$, and when \mathbb{S}^{n} is replaced by B, the unit ball in \mathbb{R}^{n}. We extend $u \in W^{s, p}\left(B ; \mathbb{S}^{1}\right)$ to \mathbb{R}^{n} by reflections and cutoff. We let $\Pi \in C^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ such that $\Pi(z)=z /|z|$ when $|z| \geqslant 1 / 2$ and let ρ be a suitable mollifier. With $w(x, \varepsilon):=u * \rho_{\varepsilon}(x)$, $x \in \mathbb{R}^{n}, \varepsilon>0$, we set, inspired by [14],

$$
\varphi_{1}(x):=-\int_{0}^{\infty} \Pi \circ w(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon}(\Pi \circ w)(x, \varepsilon) \mathrm{d} \varepsilon
$$

This φ_{1} satisfies $\varphi_{1} \in W^{s, p}(B)$ and $U:=u e^{-l \varphi_{1}} \in W^{1, s p}(B)$. If $s p=1$, then we may take $\varphi=\varphi_{1}$. When $1<s p<2$, two more steps are needed. We extend U to \mathbb{R}^{n} by reflections and cutoff and define $\varphi_{2}:=\sum_{k} \sum_{j<k} U_{j} \wedge U_{k}$. Here, $U=\sum_{j}$ is a Littlewood-Paley decomposition of U. The idea of improving the regularity of a map with the help of this phase originates in the paper [4] of Bourgain and Brezis. This φ_{2} satisfies $\varphi_{2} \in W^{1, s p}$ and $U e^{-l \varphi_{2}} \in W^{s p, 1}(B)$.

Third step: since $\varphi_{2} \in W^{1, s p}$, we have $\varphi_{2}=\varphi_{3}+\varphi_{4}$, where $\varphi_{3} \in W^{s, p}$ and $\varphi_{4} \in W^{s p, 1} \cap W^{1, s p}$. The regularity of φ_{4} implies that $e^{\imath \varphi_{4}} \in W^{s p, 1}[10,13]$. Thus $u=e^{\imath \varphi} v$, where $\varphi:=\varphi_{1}+\varphi_{3} \in W^{s, p}$ and $v:=U e^{\imath \varphi_{4}} \in W^{s p, 1}$.

2. The distributional Jacobian revisited

We recall the definition of the distributional Jacobian for \mathbb{S}^{1}-valued maps [17,19,2,9,12,1,6,7]. If $u=\left(u_{1}, u_{2}\right) \in$ $W^{1,1}\left(\mathbb{S}^{2} ; \mathbb{S}^{1}\right)$, then $J u:=\frac{1}{2} \mathrm{~d}\left(u_{1} \mathrm{~d} u_{2}-u_{2} \mathrm{~d} u_{1}\right)$. This distribution (current) coincides with the usual Jacobian 2-form $\mathrm{d} u_{1} \wedge \mathrm{~d} u_{2}$ if u is sufficiently smooth, say $u \in H^{1}$. In the latter case, $J u=0$ for \mathbb{S}^{1}-valued maps u. As a distribution, $J u$ is defined by

$$
\begin{equation*}
\langle J u, \zeta\rangle=\frac{1}{2} \int_{\mathbb{S}^{2}}\left(u_{1} \mathrm{~d} u_{2}-u_{2} \mathrm{~d} u_{1}\right) \wedge \mathrm{d} \zeta, \quad \forall \zeta \in C^{\infty}\left(\mathbb{S}^{2} ; \mathbb{R}\right) \tag{2}
\end{equation*}
$$

More generally, when $u \in W^{1,1}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$, $J u$ is defined as an $(n-2)$-current through the formula

$$
\begin{equation*}
\langle J u, \zeta\rangle=\frac{1}{2} \int_{\mathbb{S}^{n}}\left(u_{1} \mathrm{~d} u_{2}-u_{2} \mathrm{~d} u_{1}\right) \wedge \mathrm{d} \zeta, \quad \forall \zeta \in \Lambda^{n-2}\left(\mathbb{S}^{n}\right) \tag{3}
\end{equation*}
$$

The following result was proved in [6]:
Theorem 2. (See [6].) Let $n \geqslant 2, s>0, p \geqslant 1$ be such that $1 \leqslant s p<2$. Then $W^{s, p} \cap W^{1,1}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ is dense in $W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$. In addition, the map $u \mapsto J u$ extends by continuity from $W^{s, p} \cap W^{1,1}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ to $W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$.

Denoting by $u \mapsto J u$ this extension, Theorem 1 sheds a new light on Theorem 2 via the following:
Proposition 3. Let $n \geqslant 2$, $s>0, p \geqslant 1$ be such that $1 \leqslant s p<2$. Let $u \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)$ and write $u=v e^{\varphi \varphi}$, with $\varphi \in W^{s, p}$ and $v \in W^{s p, 1}$. Then, for each choice of φ and v, we have

$$
\begin{equation*}
\langle J u, \zeta\rangle=\frac{1}{2} \int_{\mathbb{S}^{n}}\left(v_{1} \mathrm{~d} v_{2}-v_{2} \mathrm{~d} v_{1}\right) \wedge \mathrm{d} \zeta, \quad \forall \zeta \in \Lambda^{n-2}\left(\mathbb{S}^{n}\right) \tag{4}
\end{equation*}
$$

3. Existence of maps with prescribed singularities. The two dimensional case

Set $\mathcal{R}:=\left\{u \in W^{1,1}\left(\mathbb{S}^{2} ; \mathbb{S}^{1}\right) ; u\right.$ is smooth outside some finite set $\left.A=A(u)\right\}$. When $u \in \mathcal{R}$, we have $\langle J u, \zeta\rangle=$ $\pi \sum_{a \in A} d_{a} \zeta(a)$, where the integers d_{a} are the degrees of u on suitably oriented small circles around $a \in A$ and satisfy $\sum d_{a}=0$ [12]. Thus $J u=\pi \sum_{a \in A} d_{a} \delta_{a}$. Since \mathcal{R} is dense in $W^{1,1}\left(\mathbb{S}^{2} ; \mathbb{S}^{1}\right)$ [3], one obtains that $\left\{J u ; u \in W^{1,1}\left(\mathbb{S}^{2} ; \mathbb{S}^{1}\right)\right\} \subset E_{1,1}$, where

$$
E_{1,1}:=\pi \overline{\left\{\sum\left(\delta_{P_{j}}-\delta_{N_{j}}\right)\right\}}\left(W^{1, \infty}\right)^{*}
$$

The reversed inclusion is true.
Theorem 4. (See [1,11].) We have $\left\{J u ; u \in W^{1,1}\left(\mathbb{S}^{2} ; \mathbb{S}^{1}\right)\right\}=E_{1,1}$.
Bousquet [7] partially completed this result.
Theorem 5. (See [7].) Assume that $s \geqslant 1$ and $1 \leqslant s p<2$. Then $\left\{J u ; u \in W^{s, p}\left(\mathbb{S}^{2} ; \mathbb{S}^{1}\right)\right\}=E_{s, p}$, where

$$
E_{s, p}:=\pi \overline{\left\{\sum\left(\delta_{P_{j}}-\delta_{N_{j}}\right)\right\}}\left(W^{1, s p /(s p-1)}\right)^{*} \cap\left(W^{2-s, p /(p-1)}\right)^{*} .
$$

Note that the definition of $E_{s, p}$ suggests that different values of s and p yield different $E_{s, p}$'s. Our first result in this direction is somewhat surprising.

Theorem 6. Assume that $s \geqslant 1$ and $1 \leqslant s p<2$. Then $E_{s, p}=E_{1, s p}$.
In particular, if a (possible infinite) sum of the form $\sum\left(\delta_{P_{j}}-\delta_{N_{j}}\right)$, with $\sum\left|P_{j}-N_{j}\right|<\infty$, acts on $W^{1, r}$ for some $r \in(2, \infty)$, then it also acts on the Hölder space $C^{2-r /(r-1)}$.

As a byproduct, the proof of the above theorem yields the following curious estimate:

$$
\begin{equation*}
\left\|\sum\left(\delta_{P_{j}}-\delta_{N_{j}}\right)\right\|_{\left(C^{\alpha}\right)^{*}} \leqslant K_{\alpha}\left\|\sum\left(\delta_{P_{j}}-\delta_{N_{j}}\right)\right\|_{\left(W^{1,(2-\alpha) /(1-\alpha)}\right)^{*}}^{2-\alpha} \tag{5}
\end{equation*}
$$

with K_{α} depending on $0<\alpha<1$ but independent of the P_{j} 's and N_{j} 's.
Our next result completes Theorem 5.
Theorem 7. Assume that $1 \leqslant s p<2$. Then $\left\{J u ; u \in W^{s, p}\left(\mathbb{S}^{2} ; \mathbb{S}^{1}\right)\right\}=E_{1, s p}$.

4. Existence of maps with prescribed singularities. The higher dimensional case

In dimension 3 or higher, the class \mathcal{R} is defined as

$$
\mathcal{R}:=\left\{u \in W^{1,1}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right) ; u \text { is smooth outside some }(n-2) \text {-submanifold without boundary } A=A(u) \text { of } \mathbb{S}^{n}\right\}
$$

If $u \in \mathcal{R}$, then we may identify $J u$ with the ($n-2$)-current $\pi \sum d_{j} \int_{\Gamma_{j}}$, where Γ_{j} are the (orientable, without boundary) connected components of A and the integers d_{j} are the degrees of u on suitably oriented small circles linking to the Γ_{j} 's [12,1,7]. We then define, for $1<q<2$,

$$
E_{1, q}:=\pi \overline{\left\{d_{j} \int_{\Gamma_{j}}\right\}^{\left(W^{1, q /(q-1)}\right)^{*}}}
$$

For $q=1$, the suitable higher dimensional analog of $E_{1,1}$ was pointed out by Alberti, Baldo, Orlandi [1] and is given by $E_{1,1}:=\pi\{\partial M ; M$ is a rectifiable $(n-1)$-current $\}$. With these notations, we have

Theorem 8. Assume that $n \geqslant 3$ and $1 \leqslant s p<2$. Then $\left\{J u ; u \in W^{s, p}\left(\mathbb{S}^{n} ; \mathbb{S}^{1}\right)\right\}=E_{1, s p}$.
The case $s=1, p=1$ was known before [1]. The case $s p=1$ was obtained jointly with Bousquet [8]. The case $1<s p<2$ relies on Theorem 1 and on techniques from [7]. Finally, the analog of (5) is given by

$$
\begin{equation*}
\left\|\sum d_{j} \int_{\Gamma_{j}}\right\|_{\left(C^{\alpha}\right)^{*}} \leqslant K_{\alpha}\left\|\sum d_{j} \int_{\Gamma_{j}}\right\|_{\left(W^{1,(2-\alpha) /(1-\alpha))^{*}}\right.}^{2-\alpha}, \quad 0<\alpha<1 \tag{6}
\end{equation*}
$$

Detailed proofs will appear in [16].

Acknowledgement

The author warmly thanks Pierre Bousquet and Haïm Brezis for useful discussions.

References

[1] G. Alberti, S. Baldo, G. Orlandi, Functions with prescribed singularities, J. Eur. Math. Soc. 5 (3) (2003) 275-311.
[2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977) 337-403.
[3] F. Bethuel, X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988) 60-75.
[4] J. Bourgain, H. Brezis, On the equation div $Y=f$ and application to control of phases, J. Amer. Math. Soc. 16 (2003) 393-426.
[5] J. Bourgain, H. Brezis, P. Mironescu, Lifting in Sobolev spaces, J. Anal. Math. 80 (2000) 37-86.
[6] J. Bourgain, H. Brezis, P. Mironescu, $H^{1 / 2}$ maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation, Publ. Math. Inst. Hautes Études Sci. 99 (2004) 1-115.
[7] P. Bousquet, Topological singularities in $W^{s, p}\left(\mathbb{S}^{N}, \mathbb{S}^{1}\right)$, J. Anal. Math. 102 (2007) 311-346.
[8] P. Bousquet, P. Mironescu, in preparation.
[9] H. Brezis, J.-M. Coron, E. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (4) (1986) 649-705.
[10] H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1 (2001) $387-404$.
[11] H. Brezis, P. Mironescu, A. Ponce, $W^{1,1}$-maps with values into \mathbb{S}^{1}, in: S. Chanillo, P.D. Cordaro, N. Hanges, J. Hounie, A. Meziani (Eds.), Geometric Analysis of PDE and Several Complex Variables, in: Contemporary Mathematics, vol. 368, Amer. Math. Soc., Providence, RI, 2005, pp. 69-100.
[12] R.L. Jerrard, H.M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J. 51 (2002) 645-677.
[13] V. Maz'ya, T. Shaposhnikova, An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ. 2 (1) (2002) 113-125.
[14] P. Mironescu, Lifting default for \mathbb{S}^{1}-valued maps, C. R. Acad. Sci. Paris, Ser. I 346 (19-20) (2008) 1039-1044.
[15] P. Mironescu, \mathbb{S}^{1}-valued Sobolev maps, http://math.univ-lyon1.fr/~mironescu/7.pdf.
[16] P. Mironescu, Sobolev spaces of circle-valued maps, in preparation.
[17] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, vol. 130, Springer-Verlag New York, Inc., New York, 1966.
[18] H.-M. Nguyen, Inequalities related to liftings and applications, C. R. Acad. Sci. Paris, Ser. I 346 (17-18) (2008) 957-962.
[19] Y.G. Reshetnyak, The weak convergence of completely additive vector-valued set functions, Sibirsk. Mat. Zh. 9 (1968) 1386-1394.

[^0]: E-mail address: mironescu@math.univ-lyon1.fr.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.06.020

