Mathematical Analysis/Complex Analysis
Optimal logarithmic estimates in Hardy–Sobolev spaces Hk,
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1001-1006.

We prove sharp logarithmic estimates of optimal type in the Hardy–Sobolev spaces Hk, (kN), thus extending earlier cases. These estimations are used in particular to establish logarithmic stability results for the Cauchy problem and the inverse problem of the identification of Robin's coefficient by boundary measurements.

On montre des résultats de stabilité logarithmique de type optimal dans les espaces de Hardy–Sobolev Hk, (kN). Ces estimations s'avèrent comme une extension des résultats déjà établis, et seront utilisées en particulier pour établir des résultats de stabilité logarithmique du problème de Cauchy et du problème inverse d'identification du coefficient de Robin par des mesures de surface.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.018
Chaabane, Slim 1; Feki, Imed 1

1 Faculté des sciences de Sfax, BP 1171, 3018 Sfax, Tunisie
@article{CRMATH_2009__347_17-18_1001_0,
     author = {Chaabane, Slim and Feki, Imed},
     title = {Optimal logarithmic estimates in {Hardy{\textendash}Sobolev} spaces $ {H}^{k,\infty }$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1001--1006},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.018/}
}
TY  - JOUR
AU  - Chaabane, Slim
AU  - Feki, Imed
TI  - Optimal logarithmic estimates in Hardy–Sobolev spaces $ {H}^{k,\infty }$
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1001
EP  - 1006
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.07.018/
DO  - 10.1016/j.crma.2009.07.018
LA  - en
ID  - CRMATH_2009__347_17-18_1001_0
ER  - 
%0 Journal Article
%A Chaabane, Slim
%A Feki, Imed
%T Optimal logarithmic estimates in Hardy–Sobolev spaces $ {H}^{k,\infty }$
%J Comptes Rendus. Mathématique
%D 2009
%P 1001-1006
%V 347
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.07.018/
%R 10.1016/j.crma.2009.07.018
%G en
%F CRMATH_2009__347_17-18_1001_0
Chaabane, Slim; Feki, Imed. Optimal logarithmic estimates in Hardy–Sobolev spaces $ {H}^{k,\infty }$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1001-1006. doi : 10.1016/j.crma.2009.07.018. http://www.numdam.org/articles/10.1016/j.crma.2009.07.018/

[1] Baratchart, L.; Zerner, M. On the recovery of functions from pointwise boundary values in a Hardy–Sobolev class of the disk, J. Comput. Appl. Math., Volume 46 (1993), pp. 255-269

[2] Brezis, H. Analyse Fonctionnelle, Masson, Paris, 1983

[3] Chaabane, S.; Fellah, I.; Jaoua, M.; Leblond, J. Logarithmic stability estimates for a Robin coefficient in 2D Laplace inverse problems, Inverse Problems, Volume 20 (2004), pp. 47-59

[4] Chaabane, S.; Jaoua, M. Identification of Robin coefficients by the means of boundary measurements, Inverse Problems, Volume 15 (1999), pp. 1425-1438

[5] Duren, P.L. Theory of Hp Spaces, Academic Press, New York, 1970

[6] Leblond, J.; Mahjoub, M.; Partington, J.R. Analytic extensions and Cauchy-type inverse problems on annular domains: Stability results, J. Inv. Ill-Posed Problems, Volume 14 (2006) no. 2, pp. 189-204

Cited by Sources: