We prove sharp logarithmic estimates of optimal type in the Hardy–Sobolev spaces (), thus extending earlier cases. These estimations are used in particular to establish logarithmic stability results for the Cauchy problem and the inverse problem of the identification of Robin's coefficient by boundary measurements.
On montre des résultats de stabilité logarithmique de type optimal dans les espaces de Hardy–Sobolev (). Ces estimations s'avèrent comme une extension des résultats déjà établis, et seront utilisées en particulier pour établir des résultats de stabilité logarithmique du problème de Cauchy et du problème inverse d'identification du coefficient de Robin par des mesures de surface.
Accepted:
Published online:
@article{CRMATH_2009__347_17-18_1001_0, author = {Chaabane, Slim and Feki, Imed}, title = {Optimal logarithmic estimates in {Hardy{\textendash}Sobolev} spaces $ {H}^{k,\infty }$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1001--1006}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.018}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.018/} }
TY - JOUR AU - Chaabane, Slim AU - Feki, Imed TI - Optimal logarithmic estimates in Hardy–Sobolev spaces $ {H}^{k,\infty }$ JO - Comptes Rendus. Mathématique PY - 2009 SP - 1001 EP - 1006 VL - 347 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.07.018/ DO - 10.1016/j.crma.2009.07.018 LA - en ID - CRMATH_2009__347_17-18_1001_0 ER -
%0 Journal Article %A Chaabane, Slim %A Feki, Imed %T Optimal logarithmic estimates in Hardy–Sobolev spaces $ {H}^{k,\infty }$ %J Comptes Rendus. Mathématique %D 2009 %P 1001-1006 %V 347 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.07.018/ %R 10.1016/j.crma.2009.07.018 %G en %F CRMATH_2009__347_17-18_1001_0
Chaabane, Slim; Feki, Imed. Optimal logarithmic estimates in Hardy–Sobolev spaces $ {H}^{k,\infty }$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1001-1006. doi : 10.1016/j.crma.2009.07.018. http://www.numdam.org/articles/10.1016/j.crma.2009.07.018/
[1] On the recovery of functions from pointwise boundary values in a Hardy–Sobolev class of the disk, J. Comput. Appl. Math., Volume 46 (1993), pp. 255-269
[2] Analyse Fonctionnelle, Masson, Paris, 1983
[3] Logarithmic stability estimates for a Robin coefficient in 2D Laplace inverse problems, Inverse Problems, Volume 20 (2004), pp. 47-59
[4] Identification of Robin coefficients by the means of boundary measurements, Inverse Problems, Volume 15 (1999), pp. 1425-1438
[5] Theory of Spaces, Academic Press, New York, 1970
[6] Analytic extensions and Cauchy-type inverse problems on annular domains: Stability results, J. Inv. Ill-Posed Problems, Volume 14 (2006) no. 2, pp. 189-204
Cited by Sources: