The formula (see Goodwillie [Cyclic homology, derivations, and the free loopspace, Topology 24 (2) (1985) 187–215]) on the normalized Hochschild complex is the standard replacement in noncommutative geometry for the classical Cartan homotopy formula. Our purpose is to extend this formula to the normalized bivariant Hochschild complex.
La formule (voir Goodwillie [Cyclic homology, derivations, and the free loopspace, Topology 24 (2) (1985) 187–215]) sur le complexe de Hochschild normalisé joue le rôle, en géométrie non commutative, de la formule homotopique de Cartan en homologie de Rham. Notre but est détendre cette formule au complexe de Hochschild bivariant normalisée.
Accepted:
Published online:
@article{CRMATH_2009__347_17-18_997_0, author = {Banerjee, Abhishek}, title = {Cartan homotopy formulae and the bivariant {Hochschild} complex}, journal = {Comptes Rendus. Math\'ematique}, pages = {997--1000}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.016}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.016/} }
TY - JOUR AU - Banerjee, Abhishek TI - Cartan homotopy formulae and the bivariant Hochschild complex JO - Comptes Rendus. Mathématique PY - 2009 SP - 997 EP - 1000 VL - 347 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.07.016/ DO - 10.1016/j.crma.2009.07.016 LA - en ID - CRMATH_2009__347_17-18_997_0 ER -
%0 Journal Article %A Banerjee, Abhishek %T Cartan homotopy formulae and the bivariant Hochschild complex %J Comptes Rendus. Mathématique %D 2009 %P 997-1000 %V 347 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.07.016/ %R 10.1016/j.crma.2009.07.016 %G en %F CRMATH_2009__347_17-18_997_0
Banerjee, Abhishek. Cartan homotopy formulae and the bivariant Hochschild complex. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 997-1000. doi : 10.1016/j.crma.2009.07.016. http://www.numdam.org/articles/10.1016/j.crma.2009.07.016/
[1] Cohomologie cyclique et foncteurs , C. R. Acad. Sci. Paris, Sér. I, Volume 296 (1983) no. 23, pp. 953-958
[2] Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[3] Cyclic homology, derivations, and the free loopspace, Topology, Volume 24 (1985) no. 2, pp. 187-215
[4] Bivariant cyclic theory, K-Theory, Volume 3 (1989) no. 4, pp. 339-365
[5] Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1998
[6] Differential forms on general commutative algebras, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 195-222
[7] Homology of matrix Lie algebras over rings and the Hochschild homology, Russian Math. Surveys, Volume 38 (1983) no. 2, pp. 198-199
Cited by Sources: