Homological Algebra/Lie Algebras
Cartan homotopy formulae and the bivariant Hochschild complex
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 997-1000.

The formula LD=[eD+ED,b¯+B¯] (see Goodwillie [Cyclic homology, derivations, and the free loopspace, Topology 24 (2) (1985) 187–215]) on the normalized Hochschild complex is the standard replacement in noncommutative geometry for the classical Cartan homotopy formula. Our purpose is to extend this formula to the normalized bivariant Hochschild complex.

La formule LD=[eD+ED,b¯+B¯] (voir Goodwillie [Cyclic homology, derivations, and the free loopspace, Topology 24 (2) (1985) 187–215]) sur le complexe de Hochschild normalisé joue le rôle, en géométrie non commutative, de la formule homotopique de Cartan en homologie de Rham. Notre but est détendre cette formule au complexe de Hochschild bivariant normalisée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.016
Banerjee, Abhishek 1

1 Department of Mathematics, Johns Hopkins University, 3400 N Charles St., 404 Krieger Hall, Baltimore, MD 21218, USA
@article{CRMATH_2009__347_17-18_997_0,
     author = {Banerjee, Abhishek},
     title = {Cartan homotopy formulae and the bivariant {Hochschild} complex},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {997--1000},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.016/}
}
TY  - JOUR
AU  - Banerjee, Abhishek
TI  - Cartan homotopy formulae and the bivariant Hochschild complex
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 997
EP  - 1000
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.07.016/
DO  - 10.1016/j.crma.2009.07.016
LA  - en
ID  - CRMATH_2009__347_17-18_997_0
ER  - 
%0 Journal Article
%A Banerjee, Abhishek
%T Cartan homotopy formulae and the bivariant Hochschild complex
%J Comptes Rendus. Mathématique
%D 2009
%P 997-1000
%V 347
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.07.016/
%R 10.1016/j.crma.2009.07.016
%G en
%F CRMATH_2009__347_17-18_997_0
Banerjee, Abhishek. Cartan homotopy formulae and the bivariant Hochschild complex. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 997-1000. doi : 10.1016/j.crma.2009.07.016. http://www.numdam.org/articles/10.1016/j.crma.2009.07.016/

[1] Connes, A. Cohomologie cyclique et foncteurs Extn, C. R. Acad. Sci. Paris, Sér. I, Volume 296 (1983) no. 23, pp. 953-958

[2] Connes, A. Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360

[3] Goodwillie, T.G. Cyclic homology, derivations, and the free loopspace, Topology, Volume 24 (1985) no. 2, pp. 187-215

[4] Jones, J.D.S.; Kassel, C. Bivariant cyclic theory, K-Theory, Volume 3 (1989) no. 4, pp. 339-365

[5] Loday, J.-L. Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1998

[6] Rinehart, G.S. Differential forms on general commutative algebras, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 195-222

[7] Tsygan, B.L. Homology of matrix Lie algebras over rings and the Hochschild homology, Russian Math. Surveys, Volume 38 (1983) no. 2, pp. 198-199

Cited by Sources: