In this Note, we show that any localized average sampler could not be a stable sampler for , but that there is a localized determining sampler for .
Dans cette Note, nous démontrons que tout échantillonneur moyen localisé ne peut pas être un échantillonneur stable pour , mais qu'un échantillonneur déterminant localisé existe pour .
Accepted:
Published online:
@article{CRMATH_2009__347_17-18_1007_0, author = {Nashed, M. Zuhair and Sun, Qiyu and Tang, Wai-Shing}, title = {Average sampling in $ {L}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1007--1010}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.011/} }
TY - JOUR AU - Nashed, M. Zuhair AU - Sun, Qiyu AU - Tang, Wai-Shing TI - Average sampling in $ {L}^{2}$ JO - Comptes Rendus. Mathématique PY - 2009 SP - 1007 EP - 1010 VL - 347 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.07.011/ DO - 10.1016/j.crma.2009.07.011 LA - en ID - CRMATH_2009__347_17-18_1007_0 ER -
%0 Journal Article %A Nashed, M. Zuhair %A Sun, Qiyu %A Tang, Wai-Shing %T Average sampling in $ {L}^{2}$ %J Comptes Rendus. Mathématique %D 2009 %P 1007-1010 %V 347 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.07.011/ %R 10.1016/j.crma.2009.07.011 %G en %F CRMATH_2009__347_17-18_1007_0
Nashed, M. Zuhair; Sun, Qiyu; Tang, Wai-Shing. Average sampling in $ {L}^{2}$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1007-1010. doi : 10.1016/j.crma.2009.07.011. http://www.numdam.org/articles/10.1016/j.crma.2009.07.011/
[1] Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces, Appl. Comput. Harmon. Anal., Volume 13 (2002), pp. 151-161
[2] Nonuniform sampling and reconstruction in shift-invariant space, SIAM Rev., Volume 43 (2001), pp. 585-620
[3] Convolution, average sampling and a Calderon resolution of the identity for shift-invariant spaces, J. Fourier Anal. Appl., Volume 11 (2005), pp. 215-244
[4] Reconstructing signals with finite rate of innovation from noisy samples, Acta Appl. Math., Volume 107 (2009), pp. 339-372
[5] Sur la totalite des systemes d'exponentielles imaginaries, C. R. Acad. Sci. Paris, Volume 250 (1960), pp. 2102-2103
[6] Non-uniform average sampling and reconstruction of signals with finite rate of innovation, SIAM J. Math. Anal., Volume 38 (2006), pp. 1389-1422
[7] Sampling signals with finite rate of innovation, IEEE Trans. Signal Process., Volume 50 (2002), pp. 1417-1428
[8] Sampling – 50 years after Shannon, Proc. IEEE, Volume 88 (2000), pp. 569-587
[9] A general sampling theory for non-ideal acquisition devices, IEEE Trans. Signal Process., Volume 42 (1994), pp. 2915-2925
Cited by Sources: