Mathematical Analysis/Theory of Signals
Average sampling in L2
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1007-1010.

In this Note, we show that any localized average sampler could not be a stable sampler for L2, but that there is a localized determining sampler for L2.

Dans cette Note, nous démontrons que tout échantillonneur moyen localisé ne peut pas être un échantillonneur stable pour L2, mais qu'un échantillonneur déterminant localisé existe pour L2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.011
Nashed, M. Zuhair 1; Sun, Qiyu 1; Tang, Wai-Shing 2

1 Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
2 Department of Mathematics, National University of Singapore, Singapore
@article{CRMATH_2009__347_17-18_1007_0,
     author = {Nashed, M. Zuhair and Sun, Qiyu and Tang, Wai-Shing},
     title = {Average sampling in $ {L}^{2}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1007--1010},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.011/}
}
TY  - JOUR
AU  - Nashed, M. Zuhair
AU  - Sun, Qiyu
AU  - Tang, Wai-Shing
TI  - Average sampling in $ {L}^{2}$
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1007
EP  - 1010
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.07.011/
DO  - 10.1016/j.crma.2009.07.011
LA  - en
ID  - CRMATH_2009__347_17-18_1007_0
ER  - 
%0 Journal Article
%A Nashed, M. Zuhair
%A Sun, Qiyu
%A Tang, Wai-Shing
%T Average sampling in $ {L}^{2}$
%J Comptes Rendus. Mathématique
%D 2009
%P 1007-1010
%V 347
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.07.011/
%R 10.1016/j.crma.2009.07.011
%G en
%F CRMATH_2009__347_17-18_1007_0
Nashed, M. Zuhair; Sun, Qiyu; Tang, Wai-Shing. Average sampling in $ {L}^{2}$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1007-1010. doi : 10.1016/j.crma.2009.07.011. http://www.numdam.org/articles/10.1016/j.crma.2009.07.011/

[1] Aldroubi, A. Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces, Appl. Comput. Harmon. Anal., Volume 13 (2002), pp. 151-161

[2] Aldroubi, A.; Gröchenig, K. Nonuniform sampling and reconstruction in shift-invariant space, SIAM Rev., Volume 43 (2001), pp. 585-620

[3] Aldroubi, A.; Sun, Q.; Tang, W.-S. Convolution, average sampling and a Calderon resolution of the identity for shift-invariant spaces, J. Fourier Anal. Appl., Volume 11 (2005), pp. 215-244

[4] Bi, N.; Nashed, M.Z.; Sun, Q. Reconstructing signals with finite rate of innovation from noisy samples, Acta Appl. Math., Volume 107 (2009), pp. 339-372

[5] Koosis, P. Sur la totalite des systemes d'exponentielles imaginaries, C. R. Acad. Sci. Paris, Volume 250 (1960), pp. 2102-2103

[6] Sun, Q. Non-uniform average sampling and reconstruction of signals with finite rate of innovation, SIAM J. Math. Anal., Volume 38 (2006), pp. 1389-1422

[7] Vetterli, M.; Marziliano, P.; Blu, T. Sampling signals with finite rate of innovation, IEEE Trans. Signal Process., Volume 50 (2002), pp. 1417-1428

[8] Unser, M. Sampling – 50 years after Shannon, Proc. IEEE, Volume 88 (2000), pp. 569-587

[9] Unser, M.; Aldroubi, A. A general sampling theory for non-ideal acquisition devices, IEEE Trans. Signal Process., Volume 42 (1994), pp. 2915-2925

Cited by Sources: