Algebra/Functional Analysis
A new characterisation of idempotent states on finite and compact quantum groups
[Une nouvelle caractérisation des états idempotents sur des groupes quantiques finis ou compacts]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 991-996.

Nous donnons une caractérisation des états idempotents sur un groupe quantique fini en termes des pré-sous-groupes introduits par Baaj, Blanchard, et Skandalis, et en déduisons un isomorphisme entre le réseau des états idempotents et le réseau des sous-algèbres coïdéales d'un groupe quantique fini. Cet isomorphisme s'étend aux groupes quantiques compacts, si on le restreind au sous-algèbres coïdéales expectées.

We show that idempotent states on finite quantum groups correspond to pre-subgroups in the sense of Baaj, Blanchard, and Skandalis. It follows that the lattices formed by the idempotent states on a finite quantum group and by its coidalgebras are isomorphic. We show, furthermore, that these lattices are also isomorphic for compact quantum groups, if one restricts to expected coidalgebras.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.015
Franz, Uwe 1 ; Skalski, Adam 2

1 Département de mathématiques de Besançon, Université de Franche-Comté, 16, route de Gray, 25030 Besançon, France
2 Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
@article{CRMATH_2009__347_17-18_991_0,
     author = {Franz, Uwe and Skalski, Adam},
     title = {A new characterisation of idempotent states on finite and compact quantum groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {991--996},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.015},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2009.06.015/}
}
TY  - JOUR
AU  - Franz, Uwe
AU  - Skalski, Adam
TI  - A new characterisation of idempotent states on finite and compact quantum groups
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 991
EP  - 996
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2009.06.015/
DO  - 10.1016/j.crma.2009.06.015
LA  - en
ID  - CRMATH_2009__347_17-18_991_0
ER  - 
%0 Journal Article
%A Franz, Uwe
%A Skalski, Adam
%T A new characterisation of idempotent states on finite and compact quantum groups
%J Comptes Rendus. Mathématique
%D 2009
%P 991-996
%V 347
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2009.06.015/
%R 10.1016/j.crma.2009.06.015
%G en
%F CRMATH_2009__347_17-18_991_0
Franz, Uwe; Skalski, Adam. A new characterisation of idempotent states on finite and compact quantum groups. Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 991-996. doi : 10.1016/j.crma.2009.06.015. https://www.numdam.org/articles/10.1016/j.crma.2009.06.015/

[1] Baaj, S.; Blanchard, E.; Skandalis, G. Unitaires multiplicatifs en dimension finie et leurs sous-objets, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1305-1344

[2] Baaj, S.; Skandalis, G. Unitaires multiplicatifs et dualité pour les produits croisés de C-algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488

[3] Bedos, E.; Murphy, G.J.; Tuset, L. Co-amenability of compact quantum groups, J. Geom. Phys., Volume 40 (2001) no. 2, pp. 130-153

[4] U. Franz, A.G. Skalski, Idempotent states on compact quantum groups, , J. Algebra (2009), doi: , in press | arXiv | DOI

[5] Franz, U.; Skalski, A.G.; Tomatsu, R. Classification of idempotent states on the compact quantum groups Uq(2), SUq(2), and SOq(3), 2009 | arXiv

[6] Heyer, H. Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin, 1977

[7] Kac, G.I. Group extensions which are ring groups, Mat. Sb. (N.S.), Volume 76 (1968) no. 118, pp. 473-496

[8] Kawada, Y.; Itô, K. On the probability distribution on a compact group, I, Proc. Phys.-Math. Soc. Japan (3), Volume 22 (1940), pp. 977-998

[9] Landstad, M.B.; van Daele, A. Compact and discrete subgroups of algebraic quantum groups, I, 2007 | arXiv

[10] Maes, A.; van Daele, A. Notes on compact quantum groups, Nieuw Arch. Wisk. (4), Volume 16 (1998) no. 1–2, pp. 73-112

[11] Pal, A. A counterexample on idempotent states on a compact quantum group, Lett. Math. Phys., Volume 37 (1996) no. 1, pp. 75-77

[12] Podleś, P. Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20

[13] Van Daele, A. The Haar measure on finite quantum groups, Proc. Amer. Math. Soc., Volume 125 (1997) no. 12, pp. 3489-3500

[14] Woronowicz, S.L. Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987), pp. 613-665

[15] Woronowicz, S.L. Compact quantum groups (Connes, A.; Gawedzki, K.; Zinn-Justin, J., eds.), Symétries Quantiques, Les Houches Session LXIV, 1995, Elsevier Science, 1998, pp. 845-884

  • Kasprzak, Paweł; Khosravi, Fatemeh; Sołtan, Piotr M. Kawada-Itô-Kelley theorem for quantum semigroups, Journal of Mathematical Analysis and Applications, Volume 483 (2020) no. 2, p. 123594 | DOI:10.1016/j.jmaa.2019.123594
  • Zhang, Haonan Infinitely divisible states on finite quantum groups, Mathematische Zeitschrift, Volume 294 (2020) no. 1-2, p. 571 | DOI:10.1007/s00209-019-02288-8
  • Zhang, Haonan Idempotent states on Sekine quantum groups, Communications in Algebra, Volume 47 (2019) no. 10, p. 4095 | DOI:10.1080/00927872.2019.1579335
  • Chirvasitu, Alexandru Relative Fourier transforms and expectations on coideal subalgebras, Journal of Algebra, Volume 516 (2018), p. 271 | DOI:10.1016/j.jalgebra.2018.08.033
  • Kasprzak, Paweł; Khosravi, Fatemeh Coideals, Quantum Subgroups and Idempotent States, The Quarterly Journal of Mathematics (2017) | DOI:10.1093/qmath/haw051
  • Franz, Uwe; Lee, Hun Hee; Skalski, Adam Integration over the quantum diagonal subgroup and associated Fourier-like algebras, International Journal of Mathematics, Volume 27 (2016) no. 09, p. 1650073 | DOI:10.1142/s0129167x16500737
  • Salmi, Pekka; Skalski, Adam Idempotent States on Locally Compact Quantum Groups II, The Quarterly Journal of Mathematics (2016) | DOI:10.1093/qmath/haw045
  • Kasprzak, Paweł; Sołtan, Piotr M. Embeddable quantum homogeneous spaces, Journal of Mathematical Analysis and Applications, Volume 411 (2014) no. 2, p. 574 | DOI:10.1016/j.jmaa.2013.07.084
  • KALANTAR, MEHRDAD; NEUFANG, MATTHIAS; RUAN, ZHONG-JIN POISSON BOUNDARIES OVER LOCALLY COMPACT QUANTUM GROUPS, International Journal of Mathematics, Volume 24 (2013) no. 03, p. 1350023 | DOI:10.1142/s0129167x13500237
  • Franz, Uwe; Skalski, Adam; Tomatsu, Reiji On square roots of the Haar state on compact quantum groups, Journal of Pure and Applied Algebra, Volume 216 (2012) no. 10, p. 2079 | DOI:10.1016/j.jpaa.2012.01.020
  • Salmi, Pekka Compact quantum subgroups and left invariant C⁎-subalgebras of locally compact quantum groups, Journal of Functional Analysis, Volume 261 (2011) no. 1, p. 1 | DOI:10.1016/j.jfa.2011.03.003

Cité par 11 documents. Sources : Crossref