Nous donnons une caractérisation des états idempotents sur un groupe quantique fini en termes des pré-sous-groupes introduits par Baaj, Blanchard, et Skandalis, et en déduisons un isomorphisme entre le réseau des états idempotents et le réseau des sous-algèbres coïdéales d'un groupe quantique fini. Cet isomorphisme s'étend aux groupes quantiques compacts, si on le restreind au sous-algèbres coïdéales expectées.
We show that idempotent states on finite quantum groups correspond to pre-subgroups in the sense of Baaj, Blanchard, and Skandalis. It follows that the lattices formed by the idempotent states on a finite quantum group and by its coidalgebras are isomorphic. We show, furthermore, that these lattices are also isomorphic for compact quantum groups, if one restricts to expected coidalgebras.
Accepté le :
Publié le :
@article{CRMATH_2009__347_17-18_991_0, author = {Franz, Uwe and Skalski, Adam}, title = {A new characterisation of idempotent states on finite and compact quantum groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {991--996}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.015}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2009.06.015/} }
TY - JOUR AU - Franz, Uwe AU - Skalski, Adam TI - A new characterisation of idempotent states on finite and compact quantum groups JO - Comptes Rendus. Mathématique PY - 2009 SP - 991 EP - 996 VL - 347 IS - 17-18 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.06.015/ DO - 10.1016/j.crma.2009.06.015 LA - en ID - CRMATH_2009__347_17-18_991_0 ER -
%0 Journal Article %A Franz, Uwe %A Skalski, Adam %T A new characterisation of idempotent states on finite and compact quantum groups %J Comptes Rendus. Mathématique %D 2009 %P 991-996 %V 347 %N 17-18 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.06.015/ %R 10.1016/j.crma.2009.06.015 %G en %F CRMATH_2009__347_17-18_991_0
Franz, Uwe; Skalski, Adam. A new characterisation of idempotent states on finite and compact quantum groups. Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 991-996. doi : 10.1016/j.crma.2009.06.015. https://www.numdam.org/articles/10.1016/j.crma.2009.06.015/
[1] Unitaires multiplicatifs en dimension finie et leurs sous-objets, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1305-1344
[2] Unitaires multiplicatifs et dualité pour les produits croisés de
[3] Co-amenability of compact quantum groups, J. Geom. Phys., Volume 40 (2001) no. 2, pp. 130-153
[4] U. Franz, A.G. Skalski, Idempotent states on compact quantum groups, , J. Algebra (2009), doi: , in press | arXiv | DOI
[5] Classification of idempotent states on the compact quantum groups
[6] Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin, 1977
[7] Group extensions which are ring groups, Mat. Sb. (N.S.), Volume 76 (1968) no. 118, pp. 473-496
[8] On the probability distribution on a compact group, I, Proc. Phys.-Math. Soc. Japan (3), Volume 22 (1940), pp. 977-998
[9] Compact and discrete subgroups of algebraic quantum groups, I, 2007 | arXiv
[10] Notes on compact quantum groups, Nieuw Arch. Wisk. (4), Volume 16 (1998) no. 1–2, pp. 73-112
[11] A counterexample on idempotent states on a compact quantum group, Lett. Math. Phys., Volume 37 (1996) no. 1, pp. 75-77
[12] Symmetries of quantum spaces. Subgroups and quotient spaces of quantum
[13] The Haar measure on finite quantum groups, Proc. Amer. Math. Soc., Volume 125 (1997) no. 12, pp. 3489-3500
[14] Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987), pp. 613-665
[15] Compact quantum groups (Connes, A.; Gawedzki, K.; Zinn-Justin, J., eds.), Symétries Quantiques, Les Houches Session LXIV, 1995, Elsevier Science, 1998, pp. 845-884
- Kawada-Itô-Kelley theorem for quantum semigroups, Journal of Mathematical Analysis and Applications, Volume 483 (2020) no. 2, p. 123594 | DOI:10.1016/j.jmaa.2019.123594
- Infinitely divisible states on finite quantum groups, Mathematische Zeitschrift, Volume 294 (2020) no. 1-2, p. 571 | DOI:10.1007/s00209-019-02288-8
- Idempotent states on Sekine quantum groups, Communications in Algebra, Volume 47 (2019) no. 10, p. 4095 | DOI:10.1080/00927872.2019.1579335
- Relative Fourier transforms and expectations on coideal subalgebras, Journal of Algebra, Volume 516 (2018), p. 271 | DOI:10.1016/j.jalgebra.2018.08.033
- Coideals, Quantum Subgroups and Idempotent States, The Quarterly Journal of Mathematics (2017) | DOI:10.1093/qmath/haw051
- Integration over the quantum diagonal subgroup and associated Fourier-like algebras, International Journal of Mathematics, Volume 27 (2016) no. 09, p. 1650073 | DOI:10.1142/s0129167x16500737
- Idempotent States on Locally Compact Quantum Groups II, The Quarterly Journal of Mathematics (2016) | DOI:10.1093/qmath/haw045
- Embeddable quantum homogeneous spaces, Journal of Mathematical Analysis and Applications, Volume 411 (2014) no. 2, p. 574 | DOI:10.1016/j.jmaa.2013.07.084
- POISSON BOUNDARIES OVER LOCALLY COMPACT QUANTUM GROUPS, International Journal of Mathematics, Volume 24 (2013) no. 03, p. 1350023 | DOI:10.1142/s0129167x13500237
- On square roots of the Haar state on compact quantum groups, Journal of Pure and Applied Algebra, Volume 216 (2012) no. 10, p. 2079 | DOI:10.1016/j.jpaa.2012.01.020
- Compact quantum subgroups and left invariant C⁎-subalgebras of locally compact quantum groups, Journal of Functional Analysis, Volume 261 (2011) no. 1, p. 1 | DOI:10.1016/j.jfa.2011.03.003
Cité par 11 documents. Sources : Crossref