Complex Analysis
Analytic continuation of holomorphic mappings
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1011-1016.

Let D be a domain in Cn, n>1, and f:DCn be a holomorphic map. Let UCn be an open set such that M:=DU is in U a relatively closed, connected, smooth real-analytic hypersurface of finite type (in the sense of D'Angelo). Suppose that the cluster set clf(M) is contained in a closed, smooth real-algebraic hypersurface MU of finite type, where U is an open set in Cn. It is shown that if f extends continuously to some open piece of M, then it extends holomorphically to a neighborhood of each point of M. Note that here the compactness of M is not required.

Soient D un domaine de Cn, n>1, et f:DCn une application holomorphe. Soit UCn un ouvert tel que M:=DU est une hypersurface relativement fermée dans U, connexe, lisse, analytique réelle et de type fini (au sens de D'Angelo). Supposons que l'ensemble des points limites clf(M) est contenu dans une hypersurface, fermée, lisse, algébrique réelle MU de type fini, où U est un ouvert de Cn. Nous montrons que si f se prolonge continûment sur une partie ouverte de M, alors elle se prolonge holomorphiquement au voisinage de chaque point de M. Notons qu'ici la compacité de M n'est pas exigée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.001
Ayed, Besma 1; Ourimi, Nabil 2

1 Faculté des sciences de Monastir, route de Kairouan, Monastir, 5019, Tunisia
2 King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
@article{CRMATH_2009__347_17-18_1011_0,
     author = {Ayed, Besma and Ourimi, Nabil},
     title = {Analytic continuation of holomorphic mappings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1016},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.001/}
}
TY  - JOUR
AU  - Ayed, Besma
AU  - Ourimi, Nabil
TI  - Analytic continuation of holomorphic mappings
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1011
EP  - 1016
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.07.001/
DO  - 10.1016/j.crma.2009.07.001
LA  - en
ID  - CRMATH_2009__347_17-18_1011_0
ER  - 
%0 Journal Article
%A Ayed, Besma
%A Ourimi, Nabil
%T Analytic continuation of holomorphic mappings
%J Comptes Rendus. Mathématique
%D 2009
%P 1011-1016
%V 347
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.07.001/
%R 10.1016/j.crma.2009.07.001
%G en
%F CRMATH_2009__347_17-18_1011_0
Ayed, Besma; Ourimi, Nabil. Analytic continuation of holomorphic mappings. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1011-1016. doi : 10.1016/j.crma.2009.07.001. http://www.numdam.org/articles/10.1016/j.crma.2009.07.001/

[1] Baouendi, M.S.; Rotshschild, L.P. Images of real hypersurfaces under holomorphic mappings, J. Differential Geom., Volume 36 (1992), pp. 75-88

[2] Diederich, K.; Pinchuk, S. Analytic sets extending the graphs of holomorphic mappings, J. Geom. Anal., Volume 14 (2004) no. 2, pp. 231-239

[3] Diederich, K.; Pinchuk, S. Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J., Volume 44 (1995), pp. 1089-1126

[4] Diederich, K.; Pinchuk, S. Regularity of continuous CR maps in arbitrary dimension, Michigan Math. J., Volume 51 (2003) no. 1, pp. 111-140

[5] Huang, X. Schwarz reflection principle in complex spaces of dimension 2, Comm. Partial Differential Equations, Volume 21 (1996) no. 11–12, pp. 1781-1828

[6] Merker, J.; Porten, E. On wedge extendability of CR-meromorphic functions, Math. Z., Volume 241 (2002), pp. 485-512

[7] Pinchuk, S.; Verma, K. Analytic sets and the boundary regularity of CR-mappings, Proc. AMS, Volume 129 (2001), pp. 2623-2632

[8] Shafikov, R. Analytic continuation of germs of holomorphic mappings, Michigan Math. J., Volume 47 (2000), pp. 133-149

[9] Shafikov, R. On boundary regularity of proper holomorphic mappings, Math. Z., Volume 242 (2002), pp. 517-528

[10] Shafikov, R.; Verma, K. A local extension theorem for proper holomorphic mappings in C2, J. Geom. Anal., Volume 13 (2003) no. 4, pp. 697-714

[11] Shafikov, R.; Verma, K. Extension of holomorphic maps between real hypersurfaces of different dimensions, Ann. Inst. Fourier, Grenoble, Volume 57 (2007) no. 6, pp. 2063-2080

Cited by Sources: