Numerical Analysis
A posteriori error analysis of the heterogeneous multiscale method for homogenization problems
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1081-1086.

In this Note we derive a posteriori error estimates for a multiscale method, the so-called heterogeneous multiscale method, applied to elliptic homogenization problems. The multiscale method is based on a macro-to-micro formulation. The macroscopic method discretizes the physical problem in a macroscopic finite element space, while the microscopic method recovers the unknown macroscopic data on the fly during the macroscopic stiffness matrix assembly process. We propose a framework for the analysis allowing to take advantage of standard techniques for a posteriori error estimates at the macroscopic level and to derive residual-based indicators in the macroscopic domain for adaptive mesh refinement.

Dans cette Note, nous proposons une analyse a posteriori d'un schéma multi-échelles de type « micro–macro » pour des problèmes d'homogénéisation. Les paramètres du schéma macroscopique, inconnus à priori, sont obtenus pendant l'assemblage du problème homogénéisé à l'aide de schémas microscopiques. Le cadre que nous proposons pour l'analyse du schéma multi-échelles nous permet d'utiliser des techniques standards pour obtenir des indicateurs a posteriori par résidu de l'erreur. Ces indicateurs d'erreur permettent de mettre en oeuvre une stratégie d'adaptation du maillage.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.004
Abdulle, Assyr 1; Nonnenmacher, Achim 1

1 Section of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
@article{CRMATH_2009__347_17-18_1081_0,
     author = {Abdulle, Assyr and Nonnenmacher, Achim},
     title = {A posteriori error analysis of the heterogeneous multiscale method for homogenization problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1081--1086},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.004/}
}
TY  - JOUR
AU  - Abdulle, Assyr
AU  - Nonnenmacher, Achim
TI  - A posteriori error analysis of the heterogeneous multiscale method for homogenization problems
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1081
EP  - 1086
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.07.004/
DO  - 10.1016/j.crma.2009.07.004
LA  - en
ID  - CRMATH_2009__347_17-18_1081_0
ER  - 
%0 Journal Article
%A Abdulle, Assyr
%A Nonnenmacher, Achim
%T A posteriori error analysis of the heterogeneous multiscale method for homogenization problems
%J Comptes Rendus. Mathématique
%D 2009
%P 1081-1086
%V 347
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.07.004/
%R 10.1016/j.crma.2009.07.004
%G en
%F CRMATH_2009__347_17-18_1081_0
Abdulle, Assyr; Nonnenmacher, Achim. A posteriori error analysis of the heterogeneous multiscale method for homogenization problems. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1081-1086. doi : 10.1016/j.crma.2009.07.004. http://www.numdam.org/articles/10.1016/j.crma.2009.07.004/

[1] Abdulle, A. On a-priori error analysis of fully discrete heterogeneous multiscale FEM, SIAM Multiscale Model. Simul., Volume 4 (2005) no. 2, pp. 447-459

[2] Abdulle, A. Analysis of a heterogeneous multiscale FEM for problems in elasticity, Math. Mod. Meth. Appl. Sci. (M3AS), Volume 16 (2006) no. 4, pp. 615-635

[3] Abdulle, A. Multiscale method based on discontinuous Galerkin methods for homogenization problems, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 9-102

[4] Abdulle, A. The finite element heterogeneous multiscale method: A computational strategy for multiscale PDEs, GAKUTO Int. Ser. Math. Sci. Appl., Volume 31 (2009), pp. 135-184

[5] Abdulle, A.; Engquist, B. Finite element heterogeneous multiscale methods with near optimal computational complexity, SIAM Multiscale Model. Simul., Volume 6 (2007) no. 4, pp. 1059-1084

[6] A. Abdulle, A. Nonnenmacher, A short and versatile finite element multiscale code for homogenization problems, Comput. Methods Appl. Mech. Engrg., | DOI

[7] A. Abdulle, A. Nonnenmacher, Adaptive finite element heterogeneous multiscale method for homogenization problems, in preparation

[8] Abdulle, A.; Schwab, C. Heterogeneous multiscale FEM for diffusion problem on rough surfaces, SIAM Multiscale Model. Simul., Volume 3 (2005) no. 1, pp. 195-220

[9] L. Chenand, C.S. Zhang, AFEM@Matlab: A Matlab package of adaptive finite element methods, Technical report, 2006

[10] Dörfler, W. A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., Volume 33 (1996), pp. 1106-1124

[11] E, W.; Engquist, B. The heterogeneous multi-scale method, Commun. Math. Sci., Volume 1 (2003) no. 1, pp. 87-132

[12] E, W.; Yue, X. The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size, J. Comput. Phys., Volume 222 (2007) no. 2, pp. 556-572

[13] E, W.; Ming, P.; Zhang, P. Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., Volume 18 (2004) no. 1, pp. 121-156

[14] Jikov, V.V.; Kozlov, S.M.; Oleinik, O.A. Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994

[15] Nolen, J.; Papanicolaou, G.; Pironneau, O. A framework for adaptive multiscale methods for elliptic problems, SIAM Multiscale Model. Simul., Volume 7 (2008), pp. 171-196

[16] Oden, J.T.; Ainsworth, M. A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York, 2000

[17] Ohlberger, M. A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, SIAM Multiscale Model. Simul., Volume 4 (2005) no. 2, pp. 88-114

[18] Verfürth, R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley–Teubner, New York, 1996

Cited by Sources: