Mathematical Physics
Limiting absorption principle at low energies for a mathematical model of weak interaction: The decay of a boson
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1087-1092.

We study the spectral properties of a Hamiltonian describing the weak decay of spin 1 massive bosons into the full family of leptons. We prove that the considered Hamiltonian is self-adjoint, with a unique ground state and we derive a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold, for a sufficiently small coupling constant. As a corollary, we prove absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval.

Nous étudions les propriétés spectrales d'un hamiltonien qui décrit la désintégration du boson massif W±, de spin 1. Nous démontrons que ce hamiltonien est auto-adjoint, que l'infimum de son spectre est une valeur propre simple. Nous montrons par ailleurs une inégalité de Mourre et un principe d'absorption limite pour les énergies en dessous du premier seuil. Comme corollaire, nous obtenons le caractère purement absolument continu du spectre pour ces mêmes énergies.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.014
Barbaroux, Jean-Marie 1, 2; Guillot, Jean-Claude 3

1 Centre de physique théorique, Luminy case 907, 13288 Marseille cedex 9, France
2 Département de mathématiques, université du Sud Toulon-Var, 83957 La Garde cedex, France
3 Centre de mathématiques appliquées, UMR 7641, École polytechnique – CNRS, 91128 Palaiseau cedex, France
@article{CRMATH_2009__347_17-18_1087_0,
     author = {Barbaroux, Jean-Marie and Guillot, Jean-Claude},
     title = {Limiting absorption principle at low energies for a mathematical model of weak interaction: {The} decay of a boson},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1087--1092},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.014/}
}
TY  - JOUR
AU  - Barbaroux, Jean-Marie
AU  - Guillot, Jean-Claude
TI  - Limiting absorption principle at low energies for a mathematical model of weak interaction: The decay of a boson
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1087
EP  - 1092
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.07.014/
DO  - 10.1016/j.crma.2009.07.014
LA  - en
ID  - CRMATH_2009__347_17-18_1087_0
ER  - 
%0 Journal Article
%A Barbaroux, Jean-Marie
%A Guillot, Jean-Claude
%T Limiting absorption principle at low energies for a mathematical model of weak interaction: The decay of a boson
%J Comptes Rendus. Mathématique
%D 2009
%P 1087-1092
%V 347
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.07.014/
%R 10.1016/j.crma.2009.07.014
%G en
%F CRMATH_2009__347_17-18_1087_0
Barbaroux, Jean-Marie; Guillot, Jean-Claude. Limiting absorption principle at low energies for a mathematical model of weak interaction: The decay of a boson. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1087-1092. doi : 10.1016/j.crma.2009.07.014. http://www.numdam.org/articles/10.1016/j.crma.2009.07.014/

[1] Amour, L.; Grébert, B.; Guillot, J.-C. A mathematical model for the Fermi weak interactions, Cubo, Volume 9 (2007) no. 2, pp. 37-57

[2] Amrein, W.O.; Boutet de Monvel, A.; Georgescu, V. C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Progress in Mathematics, vol. 135, Birkhäuser Verlag, Basel, 1996

[3] Barbaroux, J.-M.; Guillot, J.-C. Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons W±, I. (preprint) | arXiv

[4] Fröhlich, J.; Griesemer, M.; Sigal, I.M. Spectral theory for the standard model of non-relativistic QED, Comm. Math. Phys., Volume 283 (2008) no. 3, pp. 613-646

[5] Glimm, J.; Jaffe, A. Quantum Field Theory and Statistical Mechanics, Birkhäuser, Boston Inc., Boston, MA, 1985 (Expositions, Reprint of articles published in 1969–1977)

[6] Greiner, W.; Müller, B. Gauge Theory of Weak Interactions, Springer, Berlin, 1989

[7] Reed, M.; Simon, B. Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975

[8] Sahbani, J. The conjugate operator method for locally regular Hamiltonians, J. Operator Theory, Volume 38 (1997) no. 2, pp. 297-322

[9] Weinberg, S. The Quantum Theory of Fields, vol. I, Foundations, Cambridge University Press, Cambridge, 2005

[10] Weinberg, S. The Quantum Theory of Fields, vol. II, Modern Applications, Cambridge University Press, Cambridge, 2005

Cited by Sources: