Étant donné un champ aléatoire fonctionnel, stationnaire (
Consider
Accepté le :
Publié le :
@article{CRMATH_2009__347_17-18_1075_0, author = {Laksaci, Ali and Maref, Fouzia}, title = {Estimation non param\'etrique de quantiles conditionnels pour des variables fonctionnelles spatialement d\'ependantes}, journal = {Comptes Rendus. Math\'ematique}, pages = {1075--1080}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.012}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/j.crma.2009.06.012/} }
TY - JOUR AU - Laksaci, Ali AU - Maref, Fouzia TI - Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes JO - Comptes Rendus. Mathématique PY - 2009 SP - 1075 EP - 1080 VL - 347 IS - 17-18 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.06.012/ DO - 10.1016/j.crma.2009.06.012 LA - fr ID - CRMATH_2009__347_17-18_1075_0 ER -
%0 Journal Article %A Laksaci, Ali %A Maref, Fouzia %T Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes %J Comptes Rendus. Mathématique %D 2009 %P 1075-1080 %V 347 %N 17-18 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.06.012/ %R 10.1016/j.crma.2009.06.012 %G fr %F CRMATH_2009__347_17-18_1075_0
Laksaci, Ali; Maref, Fouzia. Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes. Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 1075-1080. doi : 10.1016/j.crma.2009.06.012. https://www.numdam.org/articles/10.1016/j.crma.2009.06.012/
[1] New Directions in Spatial Econometrics, Springer, Berlin, 1995
[2] Kernel regression estimation for random fields, J. Statist. Plann. Inference, Volume 137 (2007), pp. 778-798
[3] Statistics for Spatial Data, Wiley, New York, 1991
[4] R.M. Crujeiras, W.G. Manteiga, A. Laksaci, E. Ould Saïd, Asymptotic properties for an
[5] Kernel regression estimation for continuous spatial processes, Math. Methods Statist., Volume 16 (2007), pp. 298-317
[6] S. Dabo-Niang, A. Laksaci, Spatial conditional quantile regression: Weak consistency of a kernel estimate, 2009, submitted for publication
[7] Asymptotic results of the kernel estimator of the conditional quantile in the normed space under α-mixing hypothesis, Comm. Statist. Theory Methods, Volume 37 (2008), pp. 2735-2759
[8] Nonparametric Functional Data Analysis, Springer Series in Statistics, Springer, New York, 2006
[9] Conditional quantiles for functionally dependent data with application to the climatic El Nino Phenomenon, Sankhyia, Volume 67 (2005), pp. 378-399
[10] Estimating some characteristics of the conditional distribution in nonparametric functional models, Stat. Inference Stoch. Process., Volume 9 (2006), pp. 47-76
[11] Random Fields on a Network – Modeling, Statistics, and Applications, Springer, New York, 1995
[12] M. Hallin, Z. Lu, K. Yu, Local linear spatial quantile regression, Bernoulli (2009), in press
[13] A. Laksaci, E. Ould Saïd, Kernel estimator for the spatial regression quantile :
[14] A generalized
[15] Asymptotic properties of a conditional quantile estimator with randomly truncated data, J. Multivariate Anal., Volume 100 (2009), pp. 546-559
[16] Nonparametric estimation of conditional expectation, J. Statist. Plann. Inference, Volume 139 (2009), pp. 164-175
[17] Spatial Statistics, Wiley, New York, 1981
[18] Non-parametric estimation of conditional quantiles, Statist. Probab. Lett., Volume 7 (1989), pp. 407-412
[19] Consistent nonparametric regression, Discuss. Ann. Statist., Volume 5 (1977), pp. 595-645
[20] Conditional empirical processes, Ann. Statist., Volume 14 (1986), pp. 638-647
[21] Kernel density estimation on random fields, J. Multivariate Anal., Volume 34 (1990), pp. 37-53
[22] E. Youndjé, Estimation non paramétrique de la densité conditionnelle par la méthode du noyau, Thèse de Doctarat, Université de Rouen, 1993
- The conditional quantile function in the single-index, Acta Universitatis Sapientiae, Mathematica, Volume 16 (2025) no. 1, p. 179 | DOI:10.47745/ausm-2024-0014
- Spatio-Functional Nadaraya–Watson Estimator of the Expectile Shortfall Regression, Axioms, Volume 13 (2024) no. 10, p. 678 | DOI:10.3390/axioms13100678
- Strong Consistency of Incomplete Functional Percentile Regression, Axioms, Volume 13 (2024) no. 7, p. 444 | DOI:10.3390/axioms13070444
- On the local linear estimation of a generalized regression function with spatial functional data, Communications in Statistics - Theory and Methods, Volume 52 (2023) no. 21, p. 7752 | DOI:10.1080/03610926.2022.2064499
- Asymptotic Results of Some Conditional Nonparametric Functional Parameters in High-Dimensional Associated Data, Mathematics, Volume 11 (2023) no. 20, p. 4290 | DOI:10.3390/math11204290
- Spatio-Functional Local Linear Asymmetric Least Square Regression Estimation: Application for Spatial Prediction of COVID-19 Propagation, Symmetry, Volume 15 (2023) no. 12, p. 2108 | DOI:10.3390/sym15122108
- Nonparametric Statistical Analysis of Spatially Distributed Functional Data, Geostatistical Functional Data Analysis (2022), p. 175 | DOI:10.1002/9781119387916.ch8
- A Nonparametric Algorithm for Spatially Dependent Functional Data: Bagging Voronoi for Clustering, Dimensional Reduction, and Regression, Geostatistical Functional Data Analysis (2022), p. 211 | DOI:10.1002/9781119387916.ch9
- On the nonparametric estimation of the conditional hazard estimator in a single functional index, Statistics in Transition New Series, Volume 23 (2022) no. 2, p. 89 | DOI:10.2478/stattrans-2022-0018
- Parametric and nonparametric conditional quantile regression modeling for dependent spatial functional data, Spatial Statistics, Volume 43 (2021), p. 100498 | DOI:10.1016/j.spasta.2021.100498
- Local linear estimate of the point at high risk: Spatial functional data case, Communications in Statistics - Theory and Methods, Volume 49 (2020) no. 11, p. 2561 | DOI:10.1080/03610926.2019.1580735
- Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional, AStA Advances in Statistical Analysis, Volume 99 (2015) no. 2, p. 131 | DOI:10.1007/s10182-014-0233-5
- Spatial modelization: Local linear estimation of the conditional distribution for functional data, Spatial Statistics, Volume 6 (2013), p. 1 | DOI:10.1016/j.spasta.2013.04.004
- On spatial conditional mode estimation for a functional regressor, Statistics Probability Letters, Volume 82 (2012) no. 7, p. 1413 | DOI:10.1016/j.spl.2012.03.029
- On the functional local linear estimate for spatial regression, Statistics Risk Modeling, Volume 29 (2012) no. 3, p. 189 | DOI:10.1524/strm.2012.1114
- Robust quantile estimation and prediction for spatial processes, Statistics Probability Letters, Volume 80 (2010) no. 17-18, p. 1447 | DOI:10.1016/j.spl.2010.05.012
Cité par 16 documents. Sources : Crossref