Nous remarquons que le résultat de comparaison de Barles–Biton–Ley sur les solutions de viscosité d'une classe d'équations non linéaires paraboliques peut être appliqué à une équation géométrique, complètement non linéaire parabolique qui apparaît dans les solutions graphiques pour les flots Lagrangiens à courbure moyenne.
We observe that the comparison result of Barles–Biton–Ley for viscosity solutions of a class of nonlinear parabolic equations can be applied to a geometric fully nonlinear parabolic equation which arises from the graphic solutions for the Lagrangian mean curvature flow.
Accepté le :
Publié le :
@article{CRMATH_2009__347_17-18_1031_0, author = {Chen, Jingyi and Pang, Chao}, title = {Uniqueness of unbounded solutions of the {Lagrangian} mean curvature flow equation for graphs}, journal = {Comptes Rendus. Math\'ematique}, pages = {1031--1034}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.020}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2009.06.020/} }
TY - JOUR AU - Chen, Jingyi AU - Pang, Chao TI - Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs JO - Comptes Rendus. Mathématique PY - 2009 SP - 1031 EP - 1034 VL - 347 IS - 17-18 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.06.020/ DO - 10.1016/j.crma.2009.06.020 LA - en ID - CRMATH_2009__347_17-18_1031_0 ER -
%0 Journal Article %A Chen, Jingyi %A Pang, Chao %T Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs %J Comptes Rendus. Mathématique %D 2009 %P 1031-1034 %V 347 %N 17-18 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.06.020/ %R 10.1016/j.crma.2009.06.020 %G en %F CRMATH_2009__347_17-18_1031_0
Chen, Jingyi; Pang, Chao. Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs. Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 1031-1034. doi : 10.1016/j.crma.2009.06.020. https://www.numdam.org/articles/10.1016/j.crma.2009.06.020/
[1] Uniqueness for parabolic equations without growth condition and applications to the mean curvature flow in
[2] Lagrangian mean curvature flow for entire Lipschitz graphs | arXiv
[3] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67
[4] Matrix Analysis, Cambridge University Press, 1985
[5] Longtime existence of the Lagrangian mean curvature flow, Calc. Var., Volume 20 (2004), pp. 25-46
[6] Mean curvature flow of Lagrangian submanifolds with convex potentials, J. Differential Geom., Volume 62 (2002), pp. 243-257
- Stability of the Generalized Lagrangian Mean Curvature Flow in Cotangent Bundle, Annals of PDE, Volume 10 (2024) no. 2 | DOI:10.1007/s40818-024-00185-w
- On the entire self-shrinking solutions to Lagrangian mean curvature flow II, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 6 | DOI:10.1007/s00526-022-02333-1
- Hyperbolic mean curvature flow for Lagrangian graphs: One dimensional case, Journal of Geometry and Physics, Volume 157 (2020), p. 103853 | DOI:10.1016/j.geomphys.2020.103853
- Lagrangian mean curvature flow for entire Lipschitz graphs II, Mathematische Annalen, Volume 357 (2013) no. 1, p. 165 | DOI:10.1007/s00208-013-0897-2
- Lagrangian mean curvature flow for entire Lipschitz graphs, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 1-2, p. 199 | DOI:10.1007/s00526-011-0431-x
- Mean Curvature Flow in Higher Codimension: Introduction and Survey, Global Differential Geometry, Volume 17 (2012), p. 231 | DOI:10.1007/978-3-642-22842-1_9
- Rigidity of entire self-shrinking solutions to curvature flows, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 664 | DOI:10.1515/crelle.2011.102
Cité par 7 documents. Sources : Crossref