We observe that the comparison result of Barles–Biton–Ley for viscosity solutions of a class of nonlinear parabolic equations can be applied to a geometric fully nonlinear parabolic equation which arises from the graphic solutions for the Lagrangian mean curvature flow.
Nous remarquons que le résultat de comparaison de Barles–Biton–Ley sur les solutions de viscosité d'une classe d'équations non linéaires paraboliques peut être appliqué à une équation géométrique, complètement non linéaire parabolique qui apparaît dans les solutions graphiques pour les flots Lagrangiens à courbure moyenne.
Accepted:
Published online:
@article{CRMATH_2009__347_17-18_1031_0, author = {Chen, Jingyi and Pang, Chao}, title = {Uniqueness of unbounded solutions of the {Lagrangian} mean curvature flow equation for graphs}, journal = {Comptes Rendus. Math\'ematique}, pages = {1031--1034}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.06.020/} }
TY - JOUR AU - Chen, Jingyi AU - Pang, Chao TI - Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs JO - Comptes Rendus. Mathématique PY - 2009 SP - 1031 EP - 1034 VL - 347 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.06.020/ DO - 10.1016/j.crma.2009.06.020 LA - en ID - CRMATH_2009__347_17-18_1031_0 ER -
%0 Journal Article %A Chen, Jingyi %A Pang, Chao %T Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs %J Comptes Rendus. Mathématique %D 2009 %P 1031-1034 %V 347 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.06.020/ %R 10.1016/j.crma.2009.06.020 %G en %F CRMATH_2009__347_17-18_1031_0
Chen, Jingyi; Pang, Chao. Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1031-1034. doi : 10.1016/j.crma.2009.06.020. http://www.numdam.org/articles/10.1016/j.crma.2009.06.020/
[1] Uniqueness for parabolic equations without growth condition and applications to the mean curvature flow in , J. Differential Equations, Volume 187 (2003), pp. 456-472
[2] Lagrangian mean curvature flow for entire Lipschitz graphs | arXiv
[3] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67
[4] Matrix Analysis, Cambridge University Press, 1985
[5] Longtime existence of the Lagrangian mean curvature flow, Calc. Var., Volume 20 (2004), pp. 25-46
[6] Mean curvature flow of Lagrangian submanifolds with convex potentials, J. Differential Geom., Volume 62 (2002), pp. 243-257
Cited by Sources: