Partial Differential Equations
Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs
[Unicité des solutions non bornées du flot lagrangien à courbure moyenne pour les graphes]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 1031-1034.

Nous remarquons que le résultat de comparaison de Barles–Biton–Ley sur les solutions de viscosité d'une classe d'équations non linéaires paraboliques peut être appliqué à une équation géométrique, complètement non linéaire parabolique qui apparaît dans les solutions graphiques pour les flots Lagrangiens à courbure moyenne.

We observe that the comparison result of Barles–Biton–Ley for viscosity solutions of a class of nonlinear parabolic equations can be applied to a geometric fully nonlinear parabolic equation which arises from the graphic solutions for the Lagrangian mean curvature flow.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.020
Chen, Jingyi 1 ; Pang, Chao 1

1 Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada
@article{CRMATH_2009__347_17-18_1031_0,
     author = {Chen, Jingyi and Pang, Chao},
     title = {Uniqueness of unbounded solutions of the {Lagrangian} mean curvature flow equation for graphs},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1031--1034},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.020},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2009.06.020/}
}
TY  - JOUR
AU  - Chen, Jingyi
AU  - Pang, Chao
TI  - Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1031
EP  - 1034
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2009.06.020/
DO  - 10.1016/j.crma.2009.06.020
LA  - en
ID  - CRMATH_2009__347_17-18_1031_0
ER  - 
%0 Journal Article
%A Chen, Jingyi
%A Pang, Chao
%T Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs
%J Comptes Rendus. Mathématique
%D 2009
%P 1031-1034
%V 347
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2009.06.020/
%R 10.1016/j.crma.2009.06.020
%G en
%F CRMATH_2009__347_17-18_1031_0
Chen, Jingyi; Pang, Chao. Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs. Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 1031-1034. doi : 10.1016/j.crma.2009.06.020. https://www.numdam.org/articles/10.1016/j.crma.2009.06.020/

[1] Barles, G.; Biton, S.; Ley, O. Uniqueness for parabolic equations without growth condition and applications to the mean curvature flow in R2, J. Differential Equations, Volume 187 (2003), pp. 456-472

[2] Chau, A.; Chen, J.; He, W. Lagrangian mean curvature flow for entire Lipschitz graphs | arXiv

[3] Crandall, M.G.; Ishii, H.; Lions, P.-L. User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67

[4] Horn, R.A.; Johnson, C.R. Matrix Analysis, Cambridge University Press, 1985

[5] Smoczyk, K. Longtime existence of the Lagrangian mean curvature flow, Calc. Var., Volume 20 (2004), pp. 25-46

[6] Smoczyk, K.; Wang, M.T. Mean curvature flow of Lagrangian submanifolds with convex potentials, J. Differential Geom., Volume 62 (2002), pp. 243-257

  • Jin, Xishen; Liu, Jiawei Stability of the Generalized Lagrangian Mean Curvature Flow in Cotangent Bundle, Annals of PDE, Volume 10 (2024) no. 2 | DOI:10.1007/s40818-024-00185-w
  • Huang, Rongli; Ou, Qianzhong; Wang, Wenlong On the entire self-shrinking solutions to Lagrangian mean curvature flow II, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 6 | DOI:10.1007/s00526-022-02333-1
  • Duan, Shuang-Shuang; He, Chun-Lei; Huang, Shou-Jun Hyperbolic mean curvature flow for Lagrangian graphs: One dimensional case, Journal of Geometry and Physics, Volume 157 (2020), p. 103853 | DOI:10.1016/j.geomphys.2020.103853
  • Chau, Albert; Chen, Jingyi; Yuan, Yu Lagrangian mean curvature flow for entire Lipschitz graphs II, Mathematische Annalen, Volume 357 (2013) no. 1, p. 165 | DOI:10.1007/s00208-013-0897-2
  • Chau, Albert; Chen, Jingyi; He, Weiyong Lagrangian mean curvature flow for entire Lipschitz graphs, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 1-2, p. 199 | DOI:10.1007/s00526-011-0431-x
  • Smoczyk, Knut Mean Curvature Flow in Higher Codimension: Introduction and Survey, Global Differential Geometry, Volume 17 (2012), p. 231 | DOI:10.1007/978-3-642-22842-1_9
  • Chau, Albert; Chen, Jingyi; Yuan, Yu Rigidity of entire self-shrinking solutions to curvature flows, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 664 | DOI:10.1515/crelle.2011.102

Cité par 7 documents. Sources : Crossref