A new characterisation of idempotent states on finite and compact quantum groups

Uwe Franz a,1, Adam Skalski b,2

a Département de mathématiques de Besançon, Université de Franche-Comté, 16, route de Gray, 25030 Besançon, France
b Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom

Received 2 June 2009; accepted 25 June 2009
Available online 22 July 2009
Presented by Gilles Pisier

Abstract

We show that idempotent states on finite quantum groups correspond to pre-subgroups in the sense of Baaj, Blanchard, and Skandalis. It follows that the lattices formed by the idempotent states on a finite quantum group and by its coideal algebras are isomorphic. We show, furthermore, that these lattices are also isomorphic for compact quantum groups, if one restricts to expected coideal algebras.

Résumé

Version française abrégée

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Dans cette Note nous donnons deux nouvelles caractérisations des états idempotents sur les groupes quantiques finis.

La première ressemble au résultat classique de Kawada et Itô, mais il fallait remplacer les sous-groupes quantiques par les pré-sous-groupes [1]. La deuxième, en terme de sous-algèbres coïdeales, découle ensuite d’un résultat de Baaj, Blanchard et Skandalis. Cette deuxième caractérisation s’étend aussi aux groupes quantiques compacts.

Rappelons qu’un groupe quantique compact est une C^*-algèbre unifiée munie d’un $*$-homomorphisme $\Delta : A \to A \otimes A$ dit coproduit tel que $(\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta$ et les espaces span$(1 \otimes a)\Delta(b); a, b \in A)$ et span$(a \otimes 1)\Delta(b); a, b \in A)$ sont denses dans $A \otimes A$, cf. [14,15]. Si A est à dimension finie, on parle de groupe quantique fini. Le coproduit permet de définir un produit de convolution $\psi_1 \star \psi_2 = (\psi_1 \otimes \psi_2) \circ \Delta$ pour $\psi_1, \psi_2 : A \to \mathbb{C}$. Un état $\phi : A \to \mathbb{C}$ est dit idempotent, si $\phi \star \phi = \phi$. Nous l’appelons état idempotent de type Haar, s’il peut s’écrire comme $\phi = h_B \circ \pi$, où (B, Δ_B) est un sous-groupe quantique de (A, Δ), avec morphisme $\pi : A \to B$ et état de Haar $h_B : B \to \mathbb{C}$. L’exemple de Pal [11] montre qu’il existe des états idempotents sur des groupes quantiques qui ne peuvent pas s’écrire sous cette forme.

Soit $H = L^2(A, h)$ l’espace hilbertien sous-jacent de la représentation GNS de A par rapport à l’état de Haar h.

Rappelons qu’un pré-sous-groupe de A est un vecteur $f \in H$ de norme $||f|| = 1$ tel que $e(f) > 0$ et $V(f \otimes f) = f \otimes f$ (où e est la continuité et $V : H \otimes H \to H \otimes H$ l’opérateur unitaire défini par $V(a \otimes b) = \Delta(a)(1 \otimes b)$ pour $a, b \in A \subseteq H$).

Posons $\omega_{u,v} : A \to \mathbb{C}, \omega_{u,v}(a) = (u, av) = h(a^*av)$ pour $u, v \in H$.

Théorème 0.1. Soit (A, Δ) un groupe quantique fini. Alors $f \mapsto \omega_{f,f}$ définit une bijection entre le réseau des pré-sous-groupes de (A, Δ) et le réseau des états idempotents sur (A, Δ).

Grâce à [1, Proposition 4.3], on peut en déduire la caractérisation suivante :

Corollaire 0.2. Soit (A, Δ) un groupe quantique fini. Alors le réseau des sous-algèbres coïdeales à droite de (A, Δ) et le réseau des états idempotents sur (A, Δ) sont isomorphes.

Cette deuxième caractérisation se généralise aux groupes quantiques compacts, si on impose l’existence d’une espérance conditionnelle.

Théorème 0.3. Soit (A, Δ) un groupe quantique compact comoyennable. Alors le réseau des sous-algèbres coïdeales à droite de (A, Δ) et le réseau des états idempotents sur (A, Δ) sont isomorphes.

1. Introduction

Les idempotent measures on a locally compact group are exactly the Haar measures of its compact subgroups, cf. [6,8]. In 1996, Pal [11] has shown that the analogous statement for quantum groups is false. In [4], we have given more examples of idempotent states on quantum groups that do not come from compact subgroups. We also provided characterisations of idempotent states on finite quantum groups in terms of group-like projections [9] and quantum subhypergroups. Subsequently with Tomatsu we extended some of these results to compact quantum groups, and determined all idempotent states on the compact quantum groups $U_q(2)$, $SU_q(2)$, and $SO_q(3)$, cf. [5].

In this Note we give a new characterisation of idempotent states on finite quantum groups in terms of the pre-subgroups introduced in [1]. That pre-subgroups give rise to idempotent states was not emphasized in [1], but can easily be seen from [1, Proposition 3.5(a)]. Here we prove that, conversely, every idempotent state comes from a pre-subgroup, cf. Theorem 3.2. As a consequence, we get a one-to-one correspondence between the idempotent states on a finite quantum group (A, Δ) and the coideal algebras in (A, Δ), cf. Corollary 3.4. The isomorphisms providing this bijection have natural explicit descriptions, cf. Remark 1 after Corollary 3.4. The idempotent states coming from compact quantum subgroups are exactly those corresponding to subgroups in the sense of Baaj, Blanchard, and Skandalis, and to coideal algebras of quotient type, see Proposition 3.6.

The one-to-one correspondence between idempotent states and coideal algebras extends to compact quantum groups, if one restricts to expected coideal algebras, cf. Theorem 4.1.
2. Preliminaries

Recall that a compact quantum group is a pair \((A, \Delta)\) of a unital C*-algebra \(A\) and a unital \(*\)-homomorphism \(\Delta : A \to A \otimes A\) such that \((\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta\) holds, and the subspaces

\[
\text{span}\{ (1 \otimes a) \Delta(b); a, b \in A \}\quad \text{and} \quad \text{span}\{ (a \otimes 1) \Delta(b); a, b \in A \}
\]

are dense in \(A \otimes A\), cf. [14,15] (here \(\otimes\) denotes the minimal tensor product of C*-algebras reducing to the algebraic tensor product in the finite-dimensional situation). If \(A\) is finite-dimensional, then \((A, \Delta)\) is called a finite quantum group. Woronowicz showed that there exists a unique state \(\rho: A \to \mathbb{C}\) such that

\[
(id_A \otimes h) \circ \Delta(a) = h(a)1 = (h \otimes id_A) \circ \Delta(a) \quad \text{for all} \quad a \in A,
\]
called the Haar state of \((A, \Delta)\). If \((A, \Delta)\) is a finite quantum group, then \(h\) is a faithful trace. A finite quantum group has a unique counit, i.e. a character \(\varepsilon : A \to \mathbb{C}\) such that \((\varepsilon \otimes \text{id}_A) \circ \Delta = \text{id}_A = (\text{id}_A \otimes \varepsilon) \circ \Delta\), and a unique Haar element, i.e. a projection \(\eta \in A\) such that \(\eta a = a\eta = \varepsilon(a)\eta\) for all \(a \in A\). For more information on finite-dimensional \(*\)-Hopf algebras and their Haar states, see [13].

Define \(V : A \otimes A \to A \otimes A\) by \(V(a \otimes b) = \Delta(a)(1 \otimes b)\). Then \(V\) extends to a unitary operator \(V : H \otimes H \to H \otimes H\) \((H = L^2(A, h)\) denotes the GNS Hilbert space of the Haar state), which satisfies \(V_{12}V_{13}V_{23} = V_{23}V_{12}\), on \(H \otimes H \otimes H\), where we used the leg notation \(V_{12} = V \otimes \text{id}\), etc. The operator \(V\) is called the multiplicative unitary of \((A, \Delta)\), see also [2].

The notion of a quantum subgroup was introduced by Kac [7] in the setting of finite ring groups and by Podleś [12] for matrix pseudo-groups.

Definition 2.1. Let \((A, \Delta_A)\) and \((B, \Delta_B)\) be two compact quantum groups. Then \((B, \Delta_B)\) is called a quantum subgroup of \((A, \Delta_A)\), if there exists a surjective \(*\)-algebra homomorphism \(\pi : A \to B\) such that \(\Delta_B \circ \pi = (\pi \otimes \pi) \circ \Delta_A\).

This definition is motivated by the properties of the restriction map \(C(G) \ni f \mapsto f|_H \in C(H)\) induced by a subgroup \(H \subseteq G\). If \(A = C(G)\) is a commutative compact quantum group, then Definition 2.1 is equivalent to the usual notion of a closed subgroup.

Definition 2.2. (See [1, Definition 3.4.]) Let \((A, \Delta_A)\) be a finite quantum group with multiplicative unitary \(V : H \otimes H \to H \otimes H\). Then a pre-subgroup of \((A, \Delta_A)\) is a unit vector \(f \in H\) such that \(\varepsilon(f) > 0\), and \(V(f \otimes f) = f \otimes f\).

Denote by \(1_h \in H\) the cyclic vector that implements the Haar state. For a finite quantum group, \(A \ni a \mapsto a1_h \in H\) is an isomorphism and \(\varepsilon(f)\) is to be understood via this identification.

We will frequently use this identification and omit \(1_h\) in the rest of the paper.

A pre-subgroup \(f\) is called a subgroup, if it belongs to the center of \(A\). In that case \(f\) gives rise to a quantum subgroup in the sense of Definition 2.1, cf. Lemma 3.5.

A non-zero element \(p \in A\) in a compact quantum group \((A, \Delta)\) is called a group-like projection [9, Definition 1.1], if it is a projection, i.e. \(p^2 = p = p^*\), and satisfies \(\Delta(p)(1 \otimes p) = p \otimes p\). We shall see that for finite quantum groups pre-subgroups and group-like idempotents are essentially the same objects, i.e. that after a rescaling pre-subgroups are group-like projections in \(A\), cf. Corollary 3.3.

For commutative finite quantum groups of the form \(A = C(G)\), pre-subgroups are multiples of indicator functions of subgroups, cf. [9, Proposition 1.4], but for noncommutative finite quantum groups this notion is more general than Definition 2.1.

Baaj, Blanchard, and Skandalis defined an order of pre-subgroups by \(g < f\) if and only if \(V(f \otimes g) = f \otimes g\).

3. Characterisations of idempotents states on finite quantum groups

The coproduct \(\Delta : A \to A \otimes A\) leads to an associative product \(\psi_1 \star \psi_2 = (\psi_1 \otimes \psi_2) \circ \Delta\) called the convolution product, for linear functionals \(\psi_1, \psi_2 : A \to \mathbb{C}\). A state \(\phi : A \to \mathbb{C}\) is idempotent, if \(\phi \star \phi = \phi\). Examples are given by \(\phi = h_2 \circ \pi\), if \((B, \Delta_B)\) is a quantum subgroup of \((A, \Delta_A)\) with morphism \(\pi : A \to B\) and Haar state \(h_2 : B \to \mathbb{C}\). We will call an idempotent state \(\phi\) on a compact quantum group \((A, \Delta)\) a Haar idempotent state, if it is of this form.
The natural order for projections can be used to equip the set of idempotent states on a compact quantum group with a partial order, i.e. \(\phi_1 \prec \phi_2 \) if and only if \(\phi_1 \ast \phi_2 = \phi_2 \), cf. [4, Section 5].

Before we can state and prove the main theorem, we need the following lemma, which is a slight variation of [10, Lemma 4.3]:

Lemma 3.1. Let \((A, \Delta)\) be a compact quantum group with two states \(f \) and \(g \) such that \(g \ast f = f \ast g = f \). Denote by \(g_b \) the functional defined by \(g_b(a) = g(ab) \) for \(a, b \in A \). Then we have \(f \ast g_b = g(b)f \) for all \(b \in A \).

For \(u, v \in L^2(A, \hbar) \), denote by \(\omega_{u,v} : A \to \mathbb{C} \) the linear functional \(A \ni a \mapsto \omega_{u,v}(a) = (u, av) = h(u^*av) \).

We have the following characterization of idempotent states in terms of pre-subgroups:

Theorem 3.2. Let \((A, \Delta)\) be a finite quantum group. Then the map \(f \mapsto \omega_{f,f} \) defines an order-preserving bijection between the pre-subgroups of \((A, \Delta)\) and the idempotent states on \((A, \Delta)\).

Proof. Let \(\omega_{f,f} \) be the state associated to a pre-subgroup \(f \in A \). We have

\[
(\omega_{f,f} \ast \omega_{f,f})(a) = \langle f \otimes f, \Delta(a)(f \otimes f) \rangle = \langle f \otimes f, (V(\Delta) \otimes \mathbb{1})(f \otimes f) \rangle = \langle f \otimes f, (a \otimes \mathbb{1})(f \otimes f) \rangle = \omega_{f,f}(a),
\]

for all \(a \in A \), i.e. \(\omega_{f,f} \) is an idempotent state. This also follows from [1, Proposition 3.5(a)].

Conversely, let \(\phi : A \to \mathbb{C} \) be an idempotent state. Since the Haar state is tracial, there exists a unique positive element \(\rho_\phi \in A \) such that \(\phi(a) = (\rho_\phi, a) \) for all \(a \in A \). Set \(f_\phi = \sqrt{\rho_\phi} \). Then have \(\phi(a) = \langle f_\phi, af_\phi \rangle \) for all \(a \in A \), and \(f_\phi = \sqrt{\rho_\phi} \) is the unique positive element with this property.

By Lemma 3.1, we have \(\phi \ast \phi_\phi = \phi(b)\phi \), i.e.

\[
(\rho_\phi \otimes \rho_\phi, a \otimes b) = \phi(a)\phi(b) = (\phi \ast \phi_\phi)(a) = (\rho_\phi \otimes \rho_\phi, \Delta(a)(1 \otimes b)) = (\rho_\phi \otimes \rho_\phi, V(a \otimes 1)V^*(1 \otimes b)) = (V^*(\rho_\phi \otimes \rho_\phi), a \otimes b)
\]

for all \(a, b \in A \), since \(V(1 \otimes b) = \Delta(1)(1 \otimes b) = 1 \otimes b \). Therefore we have \(V(\rho_\phi \otimes \rho_\phi) = \rho_\phi \otimes \rho_\phi \). Recalling the definition of \(V \) and the identification between \(H \) and \(A \), this means \(\Delta(\rho_\phi)(1 \otimes \rho_\phi) = \rho_\phi \otimes \rho_\phi \). Applying \(\varepsilon \) to the left-hand side, we get \(\rho_\phi^2 = \varepsilon(\rho_\phi)\rho_\phi \). Therefore \(\varepsilon(\rho_\phi) > 0 \) and \(f_\phi = \sqrt{\rho_\phi} = \frac{\rho_\phi}{\sqrt{\varepsilon(\rho_\phi)}} \). Clearly, \(f_\phi \) is a unit vector, \(\varepsilon(f_\phi) = \sqrt{\varepsilon(\rho_\phi)} > 0 \), and \(V(f_\phi \otimes f_\phi) = f_\phi \otimes f_\phi \), i.e. \(f_\phi \) is a pre-subgroup.

Let \(g \) be another pre-subgroup with \(\phi = \omega_{g,g} \). If we can show \(g \geq 0 \), then this implies \(g = f_\phi \). Applying \(\varepsilon \) to \(\Delta(g)(1 \otimes g) = g \otimes g \), we get \(g^2 = \varepsilon(g)g \). Applying \(\phi \) to the Haar element \(\eta \), we see \(\varepsilon(g) = \varepsilon(f_\phi) \). Furthermore, \(\omega_{g,g} = \omega_{f_\phi,f_\phi} \) is equivalent to \(g^2 = f_\phi f_\phi^* \). Therefore we get \(\|g\| = \|f_\phi\| \), and \(g/\varepsilon(g) \) is an idempotent with norm one. Therefore \(g \) is an orthogonal projection, in particular positive, and we see that \(f \mapsto w_{f,f} \) defines indeed a bijection.

Let now \(f, g \) be two pre-subgroups such that \(g \prec f \), i.e. \(V(f \otimes g) = f \otimes g \). Then

\[
(\omega_{f,f} \ast \omega_{g,g})(a) = \langle f \otimes g, \Delta(a)(f \otimes g) \rangle = \langle f \otimes g, V(a \otimes 1)V^*(f \otimes g) \rangle = \langle f \otimes g, (a \otimes 1)(f \otimes g) \rangle = \omega_{f,f}(a)
\]

for all \(a \in A \), i.e. \(\omega_{g,g} \prec \omega_{f,f} \). Conversely, if \(\omega_{g,g} \prec \omega_{f,f} \), then \(\omega_{g,g} \ast \omega_{f,f} = \omega_{f,f} \) by [4, Lemma 5.2], and \(\omega_{f,f} \ast (\omega_{g,g})_b = \omega_{g,g}(b)w_{f,f} \) for all \(b \in A \) by Lemma 3.1. A calculation similar to (1) yields \(g \prec f \). \(\square \)

Corollary 3.3. Let \((A, \Delta)\) be a finite quantum group. The map \(f \mapsto \frac{f}{\varepsilon(f)} \) defines a bijection between the pre-subgroups and the group-like projections of \((A, \Delta)\).

A right coidealgebra \(C \) in a compact quantum group is a unital \(* \)-subalgebra \(C \subseteq A \) such that \(\Delta(C) \subseteq A \otimes C \). Baaj, Blanchard, and Skandalis have shown that the lattice of pre-subgroups of a finite quantum group is isomorphic to its lattice of right coideal algebras, cf. [1, Proposition 4.3].
Corollary 3.4. Let \((A, \Delta)\) be a finite quantum group. Then the lattice of idempotent states on \((A, \Delta)\) and the lattice of right coidalgebras in \((A, \Delta)\) are isomorphic.

Remark 1. We can also give an explicit description of this bijection. Let \(\phi : A \to C\) be an idempotent state. Then one can show that \(T_\phi : A \to A\), \(T_\phi = (\text{id}_A \otimes \phi) \circ \Delta\) defines a conditional expectation, i.e. a projection \(E : A \to C\) onto a unital \(*\)-subalgebra \(C \subseteq A\) such that \(\|E\| = 1\), \(E(1) = 1\), and \(h \circ E = h\). Furthermore, since \(T_\phi\) is right-invariant, \(T_\phi(A)\) is a coidalgebra. Conversely, to recover an idempotent state \(\phi\) from a right coidalgebra \(C \subseteq A\), set \(\phi = \varepsilon \circ E_C\), where \(E_C\) denotes the unique \(h\)-preserving conditional expectation onto \(C\). See also Theorem 4.1.

Lemma 3.5. Let \((A, \Delta)\) be a finite quantum group, \(f\) a subgroup of \((A, \Delta)\), i.e. a pre-subgroup that belongs to the center of \(A\), and put \(\tilde{f} = \frac{f}{\|f\|}\). Then \((A_f, \Delta_f)\) is a quantum subgroup of \((A, \Delta)\), with \(A_f = A\eta = \{af; a \in A\}\), and \(\Delta_f : A_f \to A_f \otimes A_f\) and \(\pi_f : A \to A_f\) given by \(\Delta_f(a) = \Delta(a)(\tilde{f} \otimes \tilde{f})\) and \(\pi(a) = a\tilde{f}\) for \(a \in A\).

Proof. This follows from Corollary 3.3 and [9, Proposition 2.1]. \(\square\)

For any quantum subgroup \((B, \Delta_B)\) of \((A, \Delta)\), \(A_f/\Delta_B = \{a \in A; (\pi \otimes \text{id}) \circ \Delta_A)(a) = 1_B \otimes a\}\) defines a right coidgebra. A right coidgebra is said to be of quotient type, if it is of this form.

Using the previous Lemma, one can check that under the one-to-one correspondences given in Theorem 3.2 and Corollary 3.4, Haar idempotent states correspond to subgroups and coidalgebras of quotient type.

Proposition 3.6. Let \(\phi\) be an idempotent state. Then the following are equivalent:

(i) The state \(\phi\) is a Haar idempotent state;
(ii) The pre-subgroup \(f_\phi\) is a subgroup;
(iii) The coidgebra \(G_\phi\) is of quotient type.

4. Extension to compact quantum groups

For a compact quantum group \((A, \Delta)\), in general the Haar state \(h\) is no longer a trace, and for a closed unital \(*\)-subalgebra \(B \subseteq A\) there might exist no \(h\)-preserving conditional expectation \(E_B : A \to B\). It turns out that the existence of such a conditional expectation is the condition we have to add to extend the bijection between idempotent states and right coidalgebras. Recall that a compact quantum group is called coamenable if its reduced version is isomorphic to the universal one (equivalently, the Haar state \(h\) is faithful and \(A\) admits a character, cf. [3, Corollary 2.9]). In particular every coamenable compact quantum group admits a counit.

Theorem 4.1. Let \((A, \Delta)\) be a coamenable compact quantum group. Then there exists an order-preserving bijection between the expected right coidalgebras in \((A, \Delta)\) and the idempotent states on \((A, \Delta)\).

Sketch of proof. Given an idempotent state \(\phi \in A^*\) we define a completely positive idempotent projection \(E_\phi = (\text{id}_A \otimes \phi) \circ \Delta\). An application of Lemma 3.1 shows that \(E_\phi(E_\phi(a)E_\phi(b)) = E_\phi(a)E_\phi(b)\) for all \(a, b \in A\), where \(A\) is the \(*\)-Hopf algebra spanned by coefficients of the unitary corepresentations of \(A\). Density of \(A\) in \(A\) and the continuity argument implies that \(E_\phi(A)\) is an algebra; the right invariance of \(E_\phi\) expressed by the equality \(\Delta \circ E_\phi = (\text{id}_A \otimes E_\phi) \circ \Delta\) implies that \(E_\phi(A)\) is a right coidalgebra.

Conversely, if \(C\) is an expected right coidalgebra, let \(E_C\) denote the corresponding conditional expectation. We can show that if \(C' = \{b \in A; E_C(b) = 0\}\), then for all \(\omega \in A^\ast\), \(b \in C'\), \((\omega \otimes \text{id}_A)(\Delta(b)) \in C'\). This implies that \(E_C\) is right invariant and thus \(E_C = (\text{id}_A \otimes \phi) \circ \Delta\) for the idempotent state \(\phi := \varepsilon \circ E_C\). \(\square\)

Acknowledgements

This work was started while U.F. was visiting the Graduate School of Information Sciences of Tohoku University as Marie-Curie fellow. He would like to thank Professors Nobuaki Obata, Fumio Hiai, and the other members of
the GSIS for their hospitality. We would also like to thank Eric Ricard and Reiji Tomatsu for helpful comments and suggestions.

References