Time-dependent Hamiltonian dynamics is derived for a strand of charged units in held together by both nonlocal (for example, electrostatic) and elastic interactions. The dynamical equations in the symmetry-reduced variables are written on the dual of the semidirect-product Lie algebra with three 2-cocycles. We also demonstrate that the nonlocal interaction produces an interesting new term deriving from the coadjoint action of the Lie group on its Lie algebra . The new strand equations are written in conservative form by using the corresponding coadjoint actions.
Nous établir les équations de la dynamique hamiltonienne d'une courbe (chaine moléculaire) dans l'espace physique sujette á des interactions élastiques ainsi que non-locales (électrostatiques par exemple). Les équations dynamiques des variables réduites par symétrie sont écrites sur l'espace dual de l'algèbre de Lie (produit semidirect) avec trois 2-cocycles. Nous démontrons aussi que l'interaction non-locale produit un nouvel terme intéressant, qui dérive de l'action coadjointe du group de Lie sur son algébre . Les nouvelles équations du filament sont écrites sous une forme conservative grâce aux actions coadjointes correspondantes.
Accepted:
Published online:
@article{CRMATH_2009__347_17-18_1093_0, author = {Holm, Darryl D. and Putkaradze, Vakhtang}, title = {Nonlocal orientation-dependent dynamics of charged strands and ribbons}, journal = {Comptes Rendus. Math\'ematique}, pages = {1093--1098}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.06.009/} }
TY - JOUR AU - Holm, Darryl D. AU - Putkaradze, Vakhtang TI - Nonlocal orientation-dependent dynamics of charged strands and ribbons JO - Comptes Rendus. Mathématique PY - 2009 SP - 1093 EP - 1098 VL - 347 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.06.009/ DO - 10.1016/j.crma.2009.06.009 LA - en ID - CRMATH_2009__347_17-18_1093_0 ER -
%0 Journal Article %A Holm, Darryl D. %A Putkaradze, Vakhtang %T Nonlocal orientation-dependent dynamics of charged strands and ribbons %J Comptes Rendus. Mathématique %D 2009 %P 1093-1098 %V 347 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.06.009/ %R 10.1016/j.crma.2009.06.009 %G en %F CRMATH_2009__347_17-18_1093_0
Holm, Darryl D.; Putkaradze, Vakhtang. Nonlocal orientation-dependent dynamics of charged strands and ribbons. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1093-1098. doi : 10.1016/j.crma.2009.06.009. http://www.numdam.org/articles/10.1016/j.crma.2009.06.009/
[1] Elastic rod model of a DNA loop in the lac operon, Phys. Rev. Lett., Volume 83 (1999), pp. 4900-4903
[2] Structural motifs of macromolecules, Proc. Natl. Acad. Sci., Volume 104 (2007), pp. 17283-17286
[3] Investigation of bend and shear waves in a geometrically exact elastic rod model, J. Comp. Phys., Volume 193 (2004), pp. 642-665
[4] Geometric mechanics and the dynamics of asteroid pairs, Dynamical Systems, Volume 20 (2005), pp. 3-21
[5] H. Cendra, J.E. Marsden, T.S. Ratiu, Lagrangian Reduction by Stages, Memoirs American Mathematical Society, vol. 152, 2001
[6] Helices, Proc. Natl. Acad. Sci., Volume 103 (2006), pp. 9398-9403
[7] Hamiltonian formulations and symmetries in rod mechanics, Minneapolis, MN, 1994 (IMA Vol. Math. Appl.), Volume vol. 82, Springer, New York (1996), pp. 71-113
[8] The geometric structure of complex fluids, Adv. Appl. Math., Volume 42 (2009) no. 2, pp. 176-275
[9] Gauge-invariant Poisson brackets for chromohydrodynamics, Phys. Lett. A, Volume 90 (1982), pp. 281-283
[10] Bistable helixes, Phys. Rev. Lett., Volume 84 (2000), pp. 1631-1634
[11] Viscous nonlinear dynamics of twist and writhe, Phys. Rev. Lett., Volume 80 (1998), pp. 5232-5235
[12] Repeat protein architectures predicted by a continuum representation of fold space, Protein Sci., Volume 15 (2006), pp. 1-8
[13] Euler–Poincaré dynamics of perfect complex fluids, Geometry, Mechanics and Dynamics, Special Volume in Honor of J.E. Marsden (2001), pp. 113-167
[14] The analogy between spin glasses and Yang–Mills fluids, J. Math. Phys., Volume 29 (1988), pp. 21-30
[15] On the dynamics of molecular conformation, Proc. Natl. Acad. Sci., Volume 103 (2006), pp. 7542-7547
[16] The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates, Arch. Rational Mech. Anal., Volume 104 (1988), pp. 125-183
Cited by Sources: