Nous établir les équations de la dynamique hamiltonienne d'une courbe (chaine moléculaire) dans l'espace physique
Time-dependent Hamiltonian dynamics is derived for a strand of charged units in
Accepté le :
Publié le :
@article{CRMATH_2009__347_17-18_1093_0, author = {Holm, Darryl D. and Putkaradze, Vakhtang}, title = {Nonlocal orientation-dependent dynamics of charged strands and ribbons}, journal = {Comptes Rendus. Math\'ematique}, pages = {1093--1098}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.009}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2009.06.009/} }
TY - JOUR AU - Holm, Darryl D. AU - Putkaradze, Vakhtang TI - Nonlocal orientation-dependent dynamics of charged strands and ribbons JO - Comptes Rendus. Mathématique PY - 2009 SP - 1093 EP - 1098 VL - 347 IS - 17-18 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.06.009/ DO - 10.1016/j.crma.2009.06.009 LA - en ID - CRMATH_2009__347_17-18_1093_0 ER -
%0 Journal Article %A Holm, Darryl D. %A Putkaradze, Vakhtang %T Nonlocal orientation-dependent dynamics of charged strands and ribbons %J Comptes Rendus. Mathématique %D 2009 %P 1093-1098 %V 347 %N 17-18 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.06.009/ %R 10.1016/j.crma.2009.06.009 %G en %F CRMATH_2009__347_17-18_1093_0
Holm, Darryl D.; Putkaradze, Vakhtang. Nonlocal orientation-dependent dynamics of charged strands and ribbons. Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 1093-1098. doi : 10.1016/j.crma.2009.06.009. https://www.numdam.org/articles/10.1016/j.crma.2009.06.009/
[1] Elastic rod model of a DNA loop in the lac operon, Phys. Rev. Lett., Volume 83 (1999), pp. 4900-4903
[2] Structural motifs of macromolecules, Proc. Natl. Acad. Sci., Volume 104 (2007), pp. 17283-17286
[3] Investigation of bend and shear waves in a geometrically exact elastic rod model, J. Comp. Phys., Volume 193 (2004), pp. 642-665
[4] Geometric mechanics and the dynamics of asteroid pairs, Dynamical Systems, Volume 20 (2005), pp. 3-21
[5] H. Cendra, J.E. Marsden, T.S. Ratiu, Lagrangian Reduction by Stages, Memoirs American Mathematical Society, vol. 152, 2001
[6] Helices, Proc. Natl. Acad. Sci., Volume 103 (2006), pp. 9398-9403
[7] Hamiltonian formulations and symmetries in rod mechanics, Minneapolis, MN, 1994 (IMA Vol. Math. Appl.), Volume vol. 82, Springer, New York (1996), pp. 71-113
[8] The geometric structure of complex fluids, Adv. Appl. Math., Volume 42 (2009) no. 2, pp. 176-275
[9] Gauge-invariant Poisson brackets for chromohydrodynamics, Phys. Lett. A, Volume 90 (1982), pp. 281-283
[10] Bistable helixes, Phys. Rev. Lett., Volume 84 (2000), pp. 1631-1634
[11] Viscous nonlinear dynamics of twist and writhe, Phys. Rev. Lett., Volume 80 (1998), pp. 5232-5235
[12] Repeat protein architectures predicted by a continuum representation of fold space, Protein Sci., Volume 15 (2006), pp. 1-8
[13] Euler–Poincaré dynamics of perfect complex fluids, Geometry, Mechanics and Dynamics, Special Volume in Honor of J.E. Marsden (2001), pp. 113-167
[14] The analogy between spin glasses and Yang–Mills fluids, J. Math. Phys., Volume 29 (1988), pp. 21-30
[15] On the dynamics of molecular conformation, Proc. Natl. Acad. Sci., Volume 103 (2006), pp. 7542-7547
[16] The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates, Arch. Rational Mech. Anal., Volume 104 (1988), pp. 125-183
- Variational Methods for Fluid-Structure Interactions, Handbook of Variational Methods for Nonlinear Geometric Data (2020), p. 175 | DOI:10.1007/978-3-030-31351-7_6
- Swirling fluid flow in flexible, expandable elastic tubes: Variational approach, reductions and integrability, Physica D: Nonlinear Phenomena, Volume 401 (2020), p. 132172 | DOI:10.1016/j.physd.2019.132172
- Stability of helical tubes conveying fluid, Journal of Fluids and Structures, Volume 78 (2018), p. 146 | DOI:10.1016/j.jfluidstructs.2017.12.020
- Poincaré’s Equations for Cosserat Media: Application to Shells, Journal of Nonlinear Science, Volume 27 (2017) no. 1, p. 1 | DOI:10.1007/s00332-016-9324-7
- On Flexible Tubes Conveying Fluid: Geometric Nonlinear Theory, Stability and Dynamics, Journal of Nonlinear Science, Volume 25 (2015) no. 4, p. 889 | DOI:10.1007/s00332-015-9246-9
- Dynamics of elastic strands with rolling contact, Physica D: Nonlinear Phenomena, Volume 294 (2015), p. 6 | DOI:10.1016/j.physd.2014.11.005
- Dynamics and optimal control of flexible solar updraft towers, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 471 (2015) no. 2173, p. 20140539 | DOI:10.1098/rspa.2014.0539
- Exact geometric theory of dendronized polymer dynamics, Advances in Applied Mathematics, Volume 48 (2012) no. 4, p. 535 | DOI:10.1016/j.aam.2011.11.006
- Helical states of nonlocally interacting molecules and their linear stability: a geometric approach, Journal of Physics A: Mathematical and Theoretical, Volume 44 (2011) no. 5, p. 055201 | DOI:10.1088/1751-8113/44/5/055201
- Symmetry Reduced Dynamics of Charged Molecular Strands, Archive for Rational Mechanics and Analysis, Volume 197 (2010) no. 3, p. 811 | DOI:10.1007/s00205-010-0305-y
Cité par 10 documents. Sources : Crossref