Mathematical Physics/Mathematical Problems in Mechanics
Nonlocal orientation-dependent dynamics of charged strands and ribbons
[Dynamique non-locale des filaments électisés]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 1093-1098.

Nous établir les équations de la dynamique hamiltonienne d'une courbe (chaine moléculaire) dans l'espace physique R3 sujette á des interactions élastiques ainsi que non-locales (électrostatiques par exemple). Les équations dynamiques des variables réduites par symétrie sont écrites sur l'espace dual de l'algèbre de Lie so(3)(R3R3R3R3) (produit semidirect) avec trois 2-cocycles. Nous démontrons aussi que l'interaction non-locale produit un nouvel terme intéressant, qui dérive de l'action coadjointe du group de Lie SO(3) sur son algébre so(3). Les nouvelles équations du filament sont écrites sous une forme conservative grâce aux actions coadjointes correspondantes.

Time-dependent Hamiltonian dynamics is derived for a strand of charged units in R3 held together by both nonlocal (for example, electrostatic) and elastic interactions. The dynamical equations in the symmetry-reduced variables are written on the dual of the semidirect-product Lie algebra so(3)(R3R3R3R3) with three 2-cocycles. We also demonstrate that the nonlocal interaction produces an interesting new term deriving from the coadjoint action of the Lie group SO(3) on its Lie algebra so(3). The new strand equations are written in conservative form by using the corresponding coadjoint actions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.009
Holm, Darryl D. 1 ; Putkaradze, Vakhtang 2, 3

1 Department of Mathematics, Imperial College London, London SW7 2AZ, UK
2 Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
3 Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
@article{CRMATH_2009__347_17-18_1093_0,
     author = {Holm, Darryl D. and Putkaradze, Vakhtang},
     title = {Nonlocal orientation-dependent dynamics of charged strands and ribbons},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1093--1098},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.009},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2009.06.009/}
}
TY  - JOUR
AU  - Holm, Darryl D.
AU  - Putkaradze, Vakhtang
TI  - Nonlocal orientation-dependent dynamics of charged strands and ribbons
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1093
EP  - 1098
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2009.06.009/
DO  - 10.1016/j.crma.2009.06.009
LA  - en
ID  - CRMATH_2009__347_17-18_1093_0
ER  - 
%0 Journal Article
%A Holm, Darryl D.
%A Putkaradze, Vakhtang
%T Nonlocal orientation-dependent dynamics of charged strands and ribbons
%J Comptes Rendus. Mathématique
%D 2009
%P 1093-1098
%V 347
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2009.06.009/
%R 10.1016/j.crma.2009.06.009
%G en
%F CRMATH_2009__347_17-18_1093_0
Holm, Darryl D.; Putkaradze, Vakhtang. Nonlocal orientation-dependent dynamics of charged strands and ribbons. Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 1093-1098. doi : 10.1016/j.crma.2009.06.009. https://www.numdam.org/articles/10.1016/j.crma.2009.06.009/

[1] Balaeff, A.; Mahadevan, L.; Schulten, K. Elastic rod model of a DNA loop in the lac operon, Phys. Rev. Lett., Volume 83 (1999), pp. 4900-4903

[2] Banavar, J.R.; Hoang, T.X.; Maddocks, J.H.; Maritan, A.; Poletto, C.; Stasiak, A.; Trovato, A. Structural motifs of macromolecules, Proc. Natl. Acad. Sci., Volume 104 (2007), pp. 17283-17286

[3] Bishop, T.C.; Cortez, R.; Zhmudsky, O.O. Investigation of bend and shear waves in a geometrically exact elastic rod model, J. Comp. Phys., Volume 193 (2004), pp. 642-665

[4] Cendra, H.; Marsden, J.E. Geometric mechanics and the dynamics of asteroid pairs, Dynamical Systems, Volume 20 (2005), pp. 3-21

[5] H. Cendra, J.E. Marsden, T.S. Ratiu, Lagrangian Reduction by Stages, Memoirs American Mathematical Society, vol. 152, 2001

[6] Chouaieb, N.; Goriely, A.; Maddocks, J.H. Helices, Proc. Natl. Acad. Sci., Volume 103 (2006), pp. 9398-9403

[7] Dichmann, D.; Li, Y.; Maddocks, J.H. Hamiltonian formulations and symmetries in rod mechanics, Minneapolis, MN, 1994 (IMA Vol. Math. Appl.), Volume vol. 82, Springer, New York (1996), pp. 71-113

[8] Gay-Balmaz, F.; Ratiu, T.S. The geometric structure of complex fluids, Adv. Appl. Math., Volume 42 (2009) no. 2, pp. 176-275

[9] Gibbons, J.; Holm, D.D.; Kupershmidt, B.A. Gauge-invariant Poisson brackets for chromohydrodynamics, Phys. Lett. A, Volume 90 (1982), pp. 281-283

[10] Goldstein, R.; Goriely, A.; Huber, G.; Wolgemuth, C. Bistable helixes, Phys. Rev. Lett., Volume 84 (2000), pp. 1631-1634

[11] Goldstein, R.; Powers, T.R.; Wiggins, C.H. Viscous nonlinear dynamics of twist and writhe, Phys. Rev. Lett., Volume 80 (1998), pp. 5232-5235

[12] Hausrath, A.; Goriely, A. Repeat protein architectures predicted by a continuum representation of fold space, Protein Sci., Volume 15 (2006), pp. 1-8

[13] Holm, D.D. Euler–Poincaré dynamics of perfect complex fluids, Geometry, Mechanics and Dynamics, Special Volume in Honor of J.E. Marsden (2001), pp. 113-167

[14] Holm, D.D.; Kupershmidt, B.A. The analogy between spin glasses and Yang–Mills fluids, J. Math. Phys., Volume 29 (1988), pp. 21-30

[15] Mezic, I. On the dynamics of molecular conformation, Proc. Natl. Acad. Sci., Volume 103 (2006), pp. 7542-7547

[16] Simó, J.C.; Marsden, J.E.; Krishnaprasad, P.S. The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates, Arch. Rational Mech. Anal., Volume 104 (1988), pp. 125-183

  • Gay-Balmaz, François; Putkaradze, Vakhtang Variational Methods for Fluid-Structure Interactions, Handbook of Variational Methods for Nonlinear Geometric Data (2020), p. 175 | DOI:10.1007/978-3-030-31351-7_6
  • Ivanov, Rossen; Putkaradze, Vakhtang Swirling fluid flow in flexible, expandable elastic tubes: Variational approach, reductions and integrability, Physica D: Nonlinear Phenomena, Volume 401 (2020), p. 132172 | DOI:10.1016/j.physd.2019.132172
  • Gay-Balmaz, François; Georgievskii, Dimitri; Putkaradze, Vakhtang Stability of helical tubes conveying fluid, Journal of Fluids and Structures, Volume 78 (2018), p. 146 | DOI:10.1016/j.jfluidstructs.2017.12.020
  • Boyer, Frederic; Renda, Federico Poincaré’s Equations for Cosserat Media: Application to Shells, Journal of Nonlinear Science, Volume 27 (2017) no. 1, p. 1 | DOI:10.1007/s00332-016-9324-7
  • Gay-Balmaz, François; Putkaradze, Vakhtang On Flexible Tubes Conveying Fluid: Geometric Nonlinear Theory, Stability and Dynamics, Journal of Nonlinear Science, Volume 25 (2015) no. 4, p. 889 | DOI:10.1007/s00332-015-9246-9
  • Gay-Balmaz, François; Putkaradze, Vakhtang Dynamics of elastic strands with rolling contact, Physica D: Nonlinear Phenomena, Volume 294 (2015), p. 6 | DOI:10.1016/j.physd.2014.11.005
  • Chi, Michael; Gay-Balmaz, François; Putkaradze, Vakhtang; Vorobieff, Peter Dynamics and optimal control of flexible solar updraft towers, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 471 (2015) no. 2173, p. 20140539 | DOI:10.1098/rspa.2014.0539
  • Gay-Balmaz, François; Holm, Darryl D.; Putkaradze, Vakhtang; Ratiu, Tudor S. Exact geometric theory of dendronized polymer dynamics, Advances in Applied Mathematics, Volume 48 (2012) no. 4, p. 535 | DOI:10.1016/j.aam.2011.11.006
  • Benoit, S; Holm, D D; Putkaradze, V Helical states of nonlocally interacting molecules and their linear stability: a geometric approach, Journal of Physics A: Mathematical and Theoretical, Volume 44 (2011) no. 5, p. 055201 | DOI:10.1088/1751-8113/44/5/055201
  • Ellis, David C. P.; Gay-Balmaz, François; Holm, Darryl D.; Putkaradze, Vakhtang; Ratiu, Tudor S. Symmetry Reduced Dynamics of Charged Molecular Strands, Archive for Rational Mechanics and Analysis, Volume 197 (2010) no. 3, p. 811 | DOI:10.1007/s00205-010-0305-y

Cité par 10 documents. Sources : Crossref