Mathematical Problems in Mechanics/Calculus of Variations
Decomposition of shell deformations – Asymptotic behavior of the Green–St Venant strain tensor
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1099-1103.

This Note deals with a new method, based on a decomposition of the deformations, to study thin shells. In particular, we give the asymptotic behavior of the Green–St Venant's strain tensor.

Dans cette Note nous présentons une nouvelle méthode, basée sur une décomposition des déformations, pour l'étude des coques minces. En particulier, nous donnons le comportement asymptotique du tenseur de Green–St Venant.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.06.018
Blanchard, Dominique 1; Griso, Georges 2

1 Université de Rouen, UMR 6085, laboratoire Raphaël-Salem, 76801 St Etienne du Rouvray cedex, France
2 Laboratoire d'analyse numérique, université P. et M. Curie, case courrier 187, 75252 Paris cedex 05, France
@article{CRMATH_2009__347_17-18_1099_0,
     author = {Blanchard, Dominique and Griso, Georges},
     title = {Decomposition of shell deformations {\textendash} {Asymptotic} behavior of the {Green{\textendash}St} {Venant} strain tensor},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1099--1103},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.06.018/}
}
TY  - JOUR
AU  - Blanchard, Dominique
AU  - Griso, Georges
TI  - Decomposition of shell deformations – Asymptotic behavior of the Green–St Venant strain tensor
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1099
EP  - 1103
VL  - 347
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.06.018/
DO  - 10.1016/j.crma.2009.06.018
LA  - en
ID  - CRMATH_2009__347_17-18_1099_0
ER  - 
%0 Journal Article
%A Blanchard, Dominique
%A Griso, Georges
%T Decomposition of shell deformations – Asymptotic behavior of the Green–St Venant strain tensor
%J Comptes Rendus. Mathématique
%D 2009
%P 1099-1103
%V 347
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.06.018/
%R 10.1016/j.crma.2009.06.018
%G en
%F CRMATH_2009__347_17-18_1099_0
Blanchard, Dominique; Griso, Georges. Decomposition of shell deformations – Asymptotic behavior of the Green–St Venant strain tensor. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1099-1103. doi : 10.1016/j.crma.2009.06.018. http://www.numdam.org/articles/10.1016/j.crma.2009.06.018/

[1] Blanchard, D.; Griso, G. Decomposition of deformations of thin rods. Application to nonlinear elasticity, Anal. Appl., Volume 7 (2009) no. 1, pp. 21-71

[2] Ciarlet, P.G. Mathematical Elasticity, Theory of Shells, vol. III, North-Holland, Amsterdam, 2000

[3] Ciarlet, P.G.; Gratie, L.; Mardare, C. A nonlinear Korn inequality on a surface, J. Math. Pures Appl., Volume 85 (2006), pp. 2-16

[4] Ciarlet, P.G.; Mardare, C. An introduction to shell theory (Ciarlet, P.G.; Li, T.T., eds.), Differential Geometry: Theory and Applications, World Scientific, Singapore, 2008, pp. 94-184

[5] Friesecke, G.; James, R.D.; Müller, S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from the three-dimensional elasticity, Comm. Pure Appl. Math., Volume LV (2002), pp. 1461-1506

[6] Friesecke, G.; James, R.D.; Müller, S. A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence, Arch. Rational Mech. Anal., Volume 130 (2006), pp. 183-236

[7] Friesecke, G.; James, R.D.; Mora, M.G.; Müller, S. Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma convergence, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 697-702

[8] Griso, G. Decomposition of displacements of thin structures, J. Math. Pures Appl., Volume 89 (2008), pp. 199-233

[9] Griso, G. Asymptotic behavior of structures made of plates, Anal. Appl., Volume 3 (2005) no. 4, pp. 325-356

[10] Pantz, O. On the justification of the nonlinear inextensional plate model, Arch. Rational Mech. Anal., Volume 167 (2003) no. 3, pp. 179-209

Cited by Sources: