The aim of this Note is to give an estimate on the tail probability of the visibility function in a Boolean model: this function is defined as the length of the longest ray starting at the origin that does not intersect an obstacle. Convergence results are added, when the size of obstacles goes to zero and when the distance between the origin and the closest obstacle goes to infinity.
Le but de cette Note est de fournir une estimation fine de la queue de la loi de probabilité de la visibilité dans un modèle Booléen : cette fonction est définie comme étant la longueur du plus grand rayon issu de l'origine n'intersectant pas d'obstacle. L'étude est complétée par des résultats de convergence lorsque la taille des obstacles tend vers 0 et lorsque la distance de l'origine au plus proche obstacle tend vers l'infini.
Accepted:
Published online:
@article{CRMATH_2009__347_11-12_659_0, author = {Calka, Pierre and Michel, Julien and Porret-Blanc, Sylvain}, title = {Visibilit\'e dans le mod\`ele {Bool\'een}}, journal = {Comptes Rendus. Math\'ematique}, pages = {659--662}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.018}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.018/} }
TY - JOUR AU - Calka, Pierre AU - Michel, Julien AU - Porret-Blanc, Sylvain TI - Visibilité dans le modèle Booléen JO - Comptes Rendus. Mathématique PY - 2009 SP - 659 EP - 662 VL - 347 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.03.018/ DO - 10.1016/j.crma.2009.03.018 LA - fr ID - CRMATH_2009__347_11-12_659_0 ER -
%0 Journal Article %A Calka, Pierre %A Michel, Julien %A Porret-Blanc, Sylvain %T Visibilité dans le modèle Booléen %J Comptes Rendus. Mathématique %D 2009 %P 659-662 %V 347 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.03.018/ %R 10.1016/j.crma.2009.03.018 %G fr %F CRMATH_2009__347_11-12_659_0
Calka, Pierre; Michel, Julien; Porret-Blanc, Sylvain. Visibilité dans le modèle Booléen. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 659-662. doi : 10.1016/j.crma.2009.03.018. http://www.numdam.org/articles/10.1016/j.crma.2009.03.018/
[1] Visibility to infinity in the hyperbolic plane, despite obstacles (2008, disponible sur) | arXiv
[2] Coverage processes on spheres and condition numbers for linear programming (2008, disponible sur) | arXiv
[3] The distributions of the smallest disks containing the Poisson–Voronoi typical cell and the Crofton cell in the plane, Adv. Appl. Probab., Volume 34 (2002), pp. 702-717
[4] The probability of covering a sphere with N circular caps, Biometrika, Volume 52 (1965), pp. 323-330
[5] On the coverage of k-dimensional space by k-dimensional spheres, Ann. Probab., Volume 13 (1985) no. 3, pp. 991-1002
[6] Solution of one problem of G. Pólya, Mat. Vesnik, Volume 48 (1996), pp. 47-50
[7] Random coverings in several dimensions, Acta Math., Volume 156 (1986), pp. 83-118
[8] Theory of Random Sets, Probability and its Applications, Springer-Verlag London Ltd., London, 2005
[9] Comparison Methods for Stochastic Models and Risks, Wiley Series in Probability and Statistics, John Wiley & Sons Ltd., Chichester, 2002
[10] Zahlentheoretisches und Wahrscheinlichkeitstheoretisches über die Sichweite im Walde, Arch. Math. Phys., Volume 3 (1918), pp. 135-142
[11] Covering the circle with random arcs, Israel J. Math., Volume 11 (1972), pp. 328-345
[12] Covering the circle with random arcs of random sizes, J. Appl. Probab., Volume 19 (1982), pp. 373-381
[13] Solution to a geometrical problem in probability, Ann. Eugenics, Volume 9 (1939), pp. 315-320
[14] Stochastic Geometry and its Applications, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons Ltd., Chichester, 1987
[15] Random coverage of a circle with applications to a shadowing problem, J. Appl. Probab., Volume 19 (1982), pp. 562-577
Cited by Sources: