Probability Theory/Statistics
Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 663-666.

Using multiple Wiener–Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations of a general Hermite process of order q with long-memory (Hurst) parameter H(12,1). We apply our results to the construction of a strongly consistent estimator for H. It is shown that the estimator is asymptotically non-normal, and converges in the mean-square, after normalization, to a standard Rosenblatt random variable.

Nous servant des intégrales multiples de Wiener–Itô et du calcul de Malliavin, nous étudions la variation quadratique renormalisée d'un processus de Hermite général d'ordre q avec paramètre de mémoire longue H(12,1). Nous appliquons nos résultats à la construction d'un estimateur fortement consistent pour H. Il est démontré que l'estimateur est asymptotiquement non-normal, et converge en moyenne de carrés, après normalisation, vers une variable aléatoire de Rosenblatt standard.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.03.026
Chronopoulou, Alexandra 1; Tudor, Ciprian A. 2; Viens, Frederi G. 1

1 Department of Statistics, Purdue University, 150 N. University St., West Lafayette, IN 47907-2067, USA
2 SAMOS-MATISSE, centre d'économie de La Sorbonne, Université de Paris 1, 90, rue de Tolbiac, 75634 Paris, France
@article{CRMATH_2009__347_11-12_663_0,
     author = {Chronopoulou, Alexandra and Tudor, Ciprian A. and Viens, Frederi G.},
     title = {Application of {Malliavin} calculus to long-memory parameter estimation for {non-Gaussian} processes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {663--666},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.026/}
}
TY  - JOUR
AU  - Chronopoulou, Alexandra
AU  - Tudor, Ciprian A.
AU  - Viens, Frederi G.
TI  - Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 663
EP  - 666
VL  - 347
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.03.026/
DO  - 10.1016/j.crma.2009.03.026
LA  - en
ID  - CRMATH_2009__347_11-12_663_0
ER  - 
%0 Journal Article
%A Chronopoulou, Alexandra
%A Tudor, Ciprian A.
%A Viens, Frederi G.
%T Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes
%J Comptes Rendus. Mathématique
%D 2009
%P 663-666
%V 347
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.03.026/
%R 10.1016/j.crma.2009.03.026
%G en
%F CRMATH_2009__347_11-12_663_0
Chronopoulou, Alexandra; Tudor, Ciprian A.; Viens, Frederi G. Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 663-666. doi : 10.1016/j.crma.2009.03.026. http://www.numdam.org/articles/10.1016/j.crma.2009.03.026/

[1] Beran, J. Statistics for Long-Memory Processes, Chapman and Hall, 1994

[2] Coeurjolly, J.F. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths, Statist. Inference Stoch. Process., Volume 4 (2001), pp. 199-227

[3] I. Nourdin, G. Peccati, Stein's method on Wiener chaos, Probab. Theory Related Fields, 44 pages, available online, | DOI

[4] Nualart, D. Malliavin Calculus and Related Topics, Springer, 2006

[5] Nualart, D.; Ortiz-Latorre, S. Central limit theorems for multiple stochastic integrals and Malliavin calculus, Stochastic Process. Appl., Volume 118 (2008) no. 4, pp. 614-628

[6] C.A. Tudor, F. Viens, Variations and estimators for the selfsimilarity order through Malliavin calculus, Ann. Probab., in press

Cited by Sources: