This Note gives geometric conditions on a surface of so that the Hilbert transform on that surface in the framework of Clifford analysis defines a bounded operator in the Hölder continuous functions classes. This result provides a generalization of the well-known theorem of Plemelj and Privalov for curves in .
Cette Note propose une condition géométrique sur une surface de de façon que la transformée de Hilbert sur cette surface, dans le contexte de l'analyse de Clifford, définisse un opérateur borné dans les classes de fonctions de Hölder. Cet résultat généralise le théorème bien connu de Plemelj et Privalov pour des courbes de .
Accepted:
Published online:
@article{CRMATH_2009__347_5-6_223_0, author = {Abreu Blaya, Ricardo and Bory Reyes, Juan and Moreno Garc{\'\i}a, Tania}, title = {The {Plemelj{\textendash}Privalov} theorem in {Clifford} analysis}, journal = {Comptes Rendus. Math\'ematique}, pages = {223--226}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.029}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.01.029/} }
TY - JOUR AU - Abreu Blaya, Ricardo AU - Bory Reyes, Juan AU - Moreno García, Tania TI - The Plemelj–Privalov theorem in Clifford analysis JO - Comptes Rendus. Mathématique PY - 2009 SP - 223 EP - 226 VL - 347 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.01.029/ DO - 10.1016/j.crma.2009.01.029 LA - en ID - CRMATH_2009__347_5-6_223_0 ER -
%0 Journal Article %A Abreu Blaya, Ricardo %A Bory Reyes, Juan %A Moreno García, Tania %T The Plemelj–Privalov theorem in Clifford analysis %J Comptes Rendus. Mathématique %D 2009 %P 223-226 %V 347 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.01.029/ %R 10.1016/j.crma.2009.01.029 %G en %F CRMATH_2009__347_5-6_223_0
Abreu Blaya, Ricardo; Bory Reyes, Juan; Moreno García, Tania. The Plemelj–Privalov theorem in Clifford analysis. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 223-226. doi : 10.1016/j.crma.2009.01.029. http://www.numdam.org/articles/10.1016/j.crma.2009.01.029/
[1] Cauchy transform on non-rectifiable surfaces in Clifford analysis, J. Math. Anal. Appl., Volume 339 (2008), pp. 31-44
[2] Clifford Cauchy type integrals on Ahlfors–David regular surfaces in , Adv. Appl. Clifford Algebras, Volume 13 (2003) no. 2, pp. 133-156
[3] Clifford Analysis, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, 1982
[4] Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. Ecole Norm. Sup. (4), Volume 17 (1984) no. 1, pp. 157-189 (in French)
[5] Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993
[6] Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, Springer-Verlag New York Inc., New York, 1969
[7] The Plemelj–Privalov theorem for generalized Hölder classes, Mat. Sb., Volume 183 (1992) no. 2, pp. 21-37 (in Russian); Translation in Russian Acad. Sci. Sb. Math., 75, 1, 1993, pp. 165-182
[8] Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995
[9] Direct and inverse estimates for a singular Cauchy integral along a closed curve, Math. Notes, Volume 19 (1976), pp. 221-231
[10] The Plemelj–Privalov theorem, Dokl. Akad. Nauk SSSR, Volume 315 (1990) no. 4, pp. 790-793 (in Russian); Translation in Soviet Math. Dokl., 42, 3, 1991, pp. 849-852
Cited by Sources: