Given complex numbers , we present necessary and sufficient conditions for the existence of a function f analytic and bounded by one in modulus on the open unit disk which admits the nontangential boundary asymptotic expansion at a given point on the unit circle. This criterion can be considered as a boundary analog of the classical result of I. Schur.
On se donne des nombres complexes , et on établit des conditions nécessaires et suffisantes d'existence d'une fonction analytique, définie sur le disque unité ouvert, bornée en module par un et admettant un développement asymptotique non tangentiel, en un point du bord, du type . Ce critère peut être considéré commec l'analogue à la frontière du résultat classique de I. Schur.
Accepted:
Published online:
@article{CRMATH_2009__347_5-6_227_0, author = {Bolotnikov, Vladimir}, title = {On boundary angular derivatives of an analytic self-map of the unit disk}, journal = {Comptes Rendus. Math\'ematique}, pages = {227--230}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.018}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.01.018/} }
TY - JOUR AU - Bolotnikov, Vladimir TI - On boundary angular derivatives of an analytic self-map of the unit disk JO - Comptes Rendus. Mathématique PY - 2009 SP - 227 EP - 230 VL - 347 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.01.018/ DO - 10.1016/j.crma.2009.01.018 LA - en ID - CRMATH_2009__347_5-6_227_0 ER -
%0 Journal Article %A Bolotnikov, Vladimir %T On boundary angular derivatives of an analytic self-map of the unit disk %J Comptes Rendus. Mathématique %D 2009 %P 227-230 %V 347 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.01.018/ %R 10.1016/j.crma.2009.01.018 %G en %F CRMATH_2009__347_5-6_227_0
Bolotnikov, Vladimir. On boundary angular derivatives of an analytic self-map of the unit disk. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 227-230. doi : 10.1016/j.crma.2009.01.018. http://www.numdam.org/articles/10.1016/j.crma.2009.01.018/
[1] Interpolation problems of Pick–Nevanlinna and Loewner type for meromorphic matrix functions, Integral Equations Operator Theory, Volume 6 (1983), pp. 804-840
[2] Interpolation problems of Pick–Nevanlinna and Loewner types for meromorphic matrix–functions: parametrization of the set of all solutions, Integral Equations Operator Theory, Volume 9 (1986), pp. 155-203
[3] On a boundary analogue of the Carathéodory–Schur interpolation problem, Proc. Amer. Math. Soc., Volume 136 (2008) no. 9, pp. 3121-3131
[4] On boundary interpolation for matrix valued Schur functions, Mem. Amer. Math. Soc., Volume 181 (2006) no. 856
[5] The higher order Carathéodory–Julia theorem and related boundary interpolation problems, Operator Theory: Advances and Applications, Volume OT 179 (2007), pp. 63-102
[6] Über den variabilitasbereich der Koeffizienten von Potenzreihen die egebene Werte nicht annehmen, Math. Ann., Volume 64 (1907), pp. 95-115
[7] Über die Winkelderivierten von beschränkten Analytischen Funktionen, Sitz. Preuss. Akad. Wiss. Berlin, Phys.-Math. (1929), pp. 39-54
[8] Multiple boundary interpolation problem for contractive matrix-valued functions in the unit circle, J. Soviet Math., Volume 52 (1990) no. 6, pp. 3467-3481
[9] Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I, J. Reine Angew. Math., Volume 147 (1917), pp. 205-232
Cited by Sources: