We present a controllability result for a second order dynamic system and its application to global optimization in the context of multi-criteria problems. In particular, we address the issue of reaching points on nonconvex regions of Pareto fronts.
Nous présentons un résultat de controlabilité pour un système dynamique d'ordre deux et son utilisation en optimisation globale dans un context de minimisation multi-critère. En particulier, nous montrons comment atteindre les points sur des fronts de Pareto nonconvexes.
Accepted:
Published online:
@article{CRMATH_2009__347_5-6_327_0, author = {Mohammadi, Bijan and Redont, Patrick}, title = {Improving the identification of general {Pareto} fronts by global optimization}, journal = {Comptes Rendus. Math\'ematique}, pages = {327--331}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.01.020/} }
TY - JOUR AU - Mohammadi, Bijan AU - Redont, Patrick TI - Improving the identification of general Pareto fronts by global optimization JO - Comptes Rendus. Mathématique PY - 2009 SP - 327 EP - 331 VL - 347 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.01.020/ DO - 10.1016/j.crma.2009.01.020 LA - en ID - CRMATH_2009__347_5-6_327_0 ER -
%0 Journal Article %A Mohammadi, Bijan %A Redont, Patrick %T Improving the identification of general Pareto fronts by global optimization %J Comptes Rendus. Mathématique %D 2009 %P 327-331 %V 347 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.01.020/ %R 10.1016/j.crma.2009.01.020 %G en %F CRMATH_2009__347_5-6_327_0
Mohammadi, Bijan; Redont, Patrick. Improving the identification of general Pareto fronts by global optimization. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 327-331. doi : 10.1016/j.crma.2009.01.020. http://www.numdam.org/articles/10.1016/j.crma.2009.01.020/
[1] A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems, Struct. Optim., Volume 14 (1997), pp. 63-69
[2] Normal-boundary intersection: A new method for generating Pareto optimal points in multicriteria optimization problems, SIAM J. Optim., Volume 8 (1998), pp. 631-657
[3] Multi-objective genetic algorithms: Problem difficulties and construction of test problems, IEEE J. Evolutionary Comp., Volume 7 (1999), pp. 205-230
[4] Semi-deterministic vs. genetic algorithms for global optimization of multichannel optical filters, Int. J. Comput. Sci. Eng., Volume 2 (2006) no. 3-4, pp. 170-188
[5] Global optimization for the design of fast microfluidic protein folding devices, Int. J. Numer. Meth. Eng., Volume 26 (2006) no. 6, pp. 319-333
[6] Semi-deterministic global optimization method and application to the control of Burgers equation, JOTA, Volume 135 (2007) no. 1, pp. 549-561
[7] Ability of objective functions to generate points on non-convex Pareto frontiers, AIAA J., Volume 38 (2000) no. 6, pp. 155-163
[8] Box-constrained multi-objective optimization: A gradient-like method without a priori scalarization, Eur. J. Oper. Res., Volume 188 (2008), pp. 662-682
[9] Optimal transport, shape optimization and global minimization, C. R. Acad. Sci. Paris, Ser. I., Volume 344 (2007), pp. 591-596
[10] Applied Shape Optimization for Fluids, Oxford Univ. Press, 2009
[11] Pratique de la simulation numérique, Dunod, Paris, 2003
[12] Manuale di Economia Politica, Manual of Political Economy, Societa Editrice Libraria, Milano, Italy, 1906 (Translated into English by Schwier, A.S, 1971, Macmillan, New York)
[13] A survey of multicriteria optimization, or the vector maximum problem, JOTA, Volume 29 (1979)
Cited by Sources: