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Abstract

Given complex numbers s0, . . . , sN , we present necessary and sufficient conditions for the existence of a function f analytic
and bounded by one in modulus on the open unit disk which admits the nontangential boundary asymptotic expansion f (z) =
s0 + s1(z − t0) + · · · + sN (z − t0)N + o((z − t0)N ) at a given point t0 on the unit circle. This criterion can be considered as a
boundary analog of the classical result of I. Schur. To cite this article: V. Bolotnikov, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un problème aux limites à dérivées non normales pour une application analytique du disque sur lui-même. On se donne
des nombres complexes s0, . . . , sN , et on établit des conditions nécessaires et suffisantes d’existence d’une fonction analytique,
définie sur le disque unité ouvert, bornée en module par un et admettant un développement asymptotique non tangentiel, en un
point t0 du bord, du type f (z) = s0 + s1(z − t0) + · · · + sN (z − t0)N + o((z − t0)N ). Ce critère peut être considéré commec
l’analogue à la frontière du résultat classique de I. Schur. Pour citer cet article : V. Bolotnikov, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let S denote the Schur class of analytic functions mapping the unit disk D into its closure (i.e., the closed unit ball
of H∞). Characterization of Schur class functions in terms of their Taylor coefficients goes back to I. Schur [9] (and
to C. Carathéodory [6] for a related class of functions):

Theorem 1.1. There is a function f (z) = s0 + s1z + · · · + sn−1z
n−1 + · · · ∈ S if and only if the lower triangular

Toeplitz matrix Un (see formula (7) below) is a contraction, i.e., if and only if the matrix P = In − UnU
∗
n is positive

semidefinite.

By conformal change in variable, a similar result is established for an arbitrary point ζ ∈ D at which the Taylor
coefficients are prescribed: there exists a function f ∈ S of the form,
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f (z) = s0 + s1(z − ζ ) + · · · + sn−1(z − ζ )n−1 + · · · , (1)

if and only if certain matrix P (explicitly constructed in terms of ζ and s0, . . . , sn) is positive semidefinite. Furthermore,
if P is positive definite, then there are infinitely many Schur class functions f of the form (1). If P � 0 is singular, then
there is a unique function ∈ S of the form (1) and this unique function is a finite Blaschke product of degree equal to
the rank of P.

Let us consider a similar question in the “boundary” setting, when the Taylor expansion (1) at ζ ∈ D is replaced by
the asymptotic expansion at some point t0 on the unit circle T.

Question. Given a point t0 ∈ T and given numbers s0, . . . , sn ∈ C, does there exist a function f ∈ S which admits the
asymptotic expansion:

f (z) = s0 + s1(z − t0) + · · · + sN(z − t0)
N + o

(
(z − t0)

N
)

(2)

as z tends to t0 nontangentially?
In what follows, all the limits are nontangential. Observe that asymptotic equality (2) is equivalent to the existence

of the following boundary limits fj (t0) and equalities:

fj (t0) := lim
z→t0

f (j)(z)

j ! = sj for j = 1, . . . ,N. (3)

We will denote by BPN the interpolation problem which consists of finding a function f ∈ S satisfying boundary
interpolation conditions (3).

Proposition 1.2. Given t0 ∈ T and s0, . . . , sN ∈ C, condition |s0| � 1 is necessary and condition |s0| < 1 is sufficient
for the problem PN to have a solution.

The necessity of condition |s0| � 1 follows from the very definition of the class S . On the other hand, if |s0| < 1,
then there are infinitely many functions f ∈ S satisfying (3); see [3, Theorem 1.2] for the proof.

The objective of this paper is to present necessary and sufficient conditions for the existence of an f ∈ S satisfy-
ing (3). Skipping the trivial case N = 0 (where condition |s0| � 1 is necessary and sufficient for the problem BP0 to
have a solution), we review the case N = 1 which is mostly known as the sketch of the proof below shows.

Theorem 1.3. There exists a function f ∈ S such that

f (z) = s0 + s1(z − t0) + o
(
(z − t0)

)
as z → t0, (4)

if and only if either (1) |s0| < 1 or (2) |s0| = 1 and t0s1s̄0 � 0.

Proof. Condition |s0| � 1 is necessary. If |s0| = 1, then the necessity of condition t0s1s̄0 � 0 follows from the
Carathéodory–Julia theorem [7]. Conversely, if |s0| < 1, then there are infinitely many functions f ∈ S of the form (4)
by Proposition 1.2. On the other hand, if the necessary conditions (2) are satisfied, then a straightforward computation
shows that the rational function,

f (z) = s0 + (z − t0)s1(1 − s̄0γ )

1 − (z − t0)s1s̄0 − zt̄0s̄0γ
,

belongs to S and satisfies (4) for every γ ∈ D. The latter formula produces infinitely many solutions to the problem PN ,
unless s1 = 0 in which case there is only one solution f ≡ s0. �

To our best knowledge the case N = 2 (covered by the next theorem) has not been considered before.

Theorem 1.4. There exists a unique function f ∈ S such that

f (z) = s0 + s1(z − t0) + s2(z − t0)
2 + o

(
(z − t0)

2) as z → t0, (5)

if and only if |s0| = 1 and s1 = s2 = 0. There are infinitely many such functions if and only if either |s0| < 1 or

|s0| = 1, s1t0s̄0 > 0 and 2 Re
(
t2
0 s̄0s2

)
� |s1|2 − t0s̄0s1. (6)
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A new point here is the following: the two first conditions in (6) guarantee the existence of functions f ∈ S
satisfying (4). Then for some of these functions to satisfy the extended asymptotic equality (5), it is necessary and
sufficient that s2 belongs to the half-plane determined in terms of s0 and s1 by the third condition in (5).

2. The main result

To establish the existence criterion for N � 2, it remains (due to Proposition 1.2) to describe all tuples
{s0, s1, . . . , sN } with |s0| = 1 satisfying (3) for some f ∈ S . To present the main result, we first introduce some
needed notation. Given t0 ∈ T and s0, s1, . . . , sN , we define the lower triangular Toeplitz matrix Un and the Hankel
matrix Hn by

Un =

⎡
⎢⎢⎢⎢⎣

s0 0 · · · 0

s1 s0
. . .

...
...

. . .
. . . 0

sn−1 · · · s1 s0

⎤
⎥⎥⎥⎥⎦ and Hn =

⎡
⎢⎢⎢⎣

s1 s2 · · · sn
s2 s3 · · · sn+1
...

...
...

sn sn+1 · · · s2n−1

⎤
⎥⎥⎥⎦ (7)

for every appropriate integer n � 1 (i.e., for n � N − 1 in the first formula and for n � (N + 1)/2 in the second). We
also introduce the upper triangular matrix Ψn(t0) = [Ψj�]nj,�=1 with the entries:

Ψj� =
{

0, if j > �,

(−1)�−1
(
�−1
j−1

)
t
�+j−1
0 , if j � �,

for j, � = 1, . . . , n (8)

(for example, Ψ1(t0) = t0 and Ψ2(t0) = [ t0 −t2
0

0 −t3
0

]
) and finally, the structured matrix,

Pn = [pij ]ni,j=1 = H
s
nΨn(t0)U

∗
n with the entries pij =

j∑
r=1

(
r∑

�=1

si+�−1Ψ�r

)
s̄j−r . (9)

The second formula in (9) follows from the first and from (7), (8). Observe that this formula defines the numbers pij

in terms of s = {s0, . . . , sN } for every pair (i, j) of indices subject to i + j � N + 1. In particular, if n � N/2, one
can define via the second formula in (9) all the entries in the matrix Pn+1 except for the rightmost diagonal entry (if
N = 2n). Let Bn ∈ C

n be the vector defined by:

Bn :=
⎡
⎢⎣

p1,n+1
...

pn,n+1

⎤
⎥⎦ =

⎡
⎢⎣

s1 s2 · · · sn+1
...

...
...

sn sn+1 · · · s2n

⎤
⎥⎦Ψn+1(t0)

⎡
⎢⎣

s̄n+1
...

s̄0

⎤
⎥⎦ . (10)

We now formulate the main result:

Theorem 2.1. Given t0 ∈ T and s0, . . . , sN , let n � (N + 1)/2 be the greatest integer such that the matrix Pn defined
by formula (9) is positive semidefinite. In case n � N/2, let pn+1,n and pn,n+1 be the numbers defined by the second
formula in (9) and let Bn be as in (10). Then

(1) The problem BPN has a unique solution if and only if |s0| = 1, Pn is singular and, either
(a) n = (N + 1)/2 and rank P

s
n = rank P

s
n−1, or

(b) n = N/2, pn+1,n = p̄n,n+1 and rank Pn = rank[PnBn].
In this case, the unique solution of the problem is a finite Blaschke product of degree equal rankPn.

(2) The problem BPN has infinitely many solutions if and only if, either
(a) |s0| < 1, or
(b) |s0| = 1, Pn > 0 and one of the following holds:

(i) n = (N + 1)/2;
(ii) n = N/2 and t0(pn+1,n − p̄n,n+1) � 0;

(iii) 0 < n < N/2 and t0(pn+1,n − p̄n,n+1) > 0.
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(3) Otherwise the problem has no solutions.

Let us show that Theorem 1.4 follows from Theorem 2.1 upon letting N = 2 in the latter. Indeed, given t0 ∈ T and
s0, s1, s1, s2 ∈ C we can define the numbers,

P1 = p11 = H1Ψ1(t0)U
∗
1 = s1t0s̄0, p21 = t0s2s̄0 and p12 = |s1|2t0 − s1s̄0t

2
0 − s2s̄0t

3
0 , (11)

by formulas (9). Since N = 2, the cases (1a), (2b(i)) and (2b(iii)) in Theorem 2.1 are not relevant. By part (1) in
Theorem 2.1, the problem BP2 has a unique solution (f ≡ s0) if and only if |s0| = 1, P

s
1 = s1t0s̄0 = 0 and B1 =

p12 = 0. It is not hard to see that these three conditions are equivalent to |s0| = 1 and s1 = s2 = 0. By part (2) in
Theorem 2.1, there are infinitely many functions f ∈ S satisfying (5) if and only if either |s0| < 1 or |s0| = 1, P1 > 0
and t0(pn+1,n − p̄n,n+1) � 0 and the latter conditions are equivalent to those in (6) which can be readily seen from (11).

We next observe that due to the upper triangular structure of the factors Ψn(t0) and U
∗
n in (9), that Pk is the principal

submatrix of Pn for every k < n. Part (1) in Theorem 2.1 can be formulated in the following more unified way:

Proposition 2.2. The uniqueness occurs if and only if the matrix Pn of the maximally possible size (i.e., with n =
[N+1

2 ]) is positive semidefinite (and singular) and admits a positive semidefinite extension Pn+1 for an appropriate
choice of s2n+1 (in case N = 2n) or of s2n+1 and s2n (in case N = 2n − 1).

Additional symmetry and rank conditions in part (1) of Theorem 2.1 guarantee that the above extension exists. As
for part (2) of the theorem, we recall that the sufficient condition (2a) follows from Proposition 1.2 and the sufficient
condition (2b(i)) has been established earlier (see e.g., [1,2,4,5,8]).

The algorithm determining whether or not there exists a Schur class function with prescribed boundary derivatives
can be designed as follows. If |s0| �= 1, then the definitive answer comes up. If |s0| = 1, it is not necessary to check
positivity of all the matrices Pk for k = 1,2, . . . to find the greatest integer n such that Pn � 0. It suffices to get the
greatest n such that Pn is Hermitian. If this Hermitian Pn is not positive semidefinite, then the problem BPN has no
solutions; this is a known fact which also can be deduced from Theorem 2.1. If Pn is positive semidefinite (singular),
then we check one of the two possibilities indicated in part (1) depending on the parity of N . If Pn > 0, then we
verify exactly one of the three possibilities in part (2b). From the numerical point view this algorithm should be quite
efficient since no matrix inversions are involved.
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