Optimal Control
Finite-time partial stabilizability of chained systems
Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 975-980.

The Note deals with partial stabilization in finite-time of a class of nonlinear chained systems. It is well known that the chain of integrators of length n is not asymptotic stabilizable by continuous stationary feedback laws. This follows from the Brockett necessary condition for stabilizability. To overcome this limitation, we construct feedback laws that stabilize in finite-time the (n1) first components of this chain of integrators while the last component converges. This special stabilization is obtained by continuous feedback laws and smooth outside the origin.

On considère des systèmes chaînés qui peuvent modéliser différents systèmes d'origine mécanique ou biologique. On sait depuis Brockett que cette classe de systèmes, qui est contrôlable, n'est pas stabilisable par des feedbacks statiques et continus. Pour contourner le problème, nous proposons l'approche de la stabilisation partielle en temps fini. Nous construisons dans ce travail des feedbacks permettant d'annuler en temps fini les (n1) premières composantes tout en assurant la convergence de la dernière composante. Les feedbacks obtenus sont continus et réguliers en dehors de zéro.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.07.014
Jammazi, Chaker 1

1 Laboratoire d'ingénierie mathématique, École polytechnique de Tunisie, B.P. 743, La Marsa 2078, Tunis, Tunisia
@article{CRMATH_2008__346_17-18_975_0,
     author = {Jammazi, Chaker},
     title = {Finite-time partial stabilizability of chained systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {975--980},
     publisher = {Elsevier},
     volume = {346},
     number = {17-18},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.014/}
}
TY  - JOUR
AU  - Jammazi, Chaker
TI  - Finite-time partial stabilizability of chained systems
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 975
EP  - 980
VL  - 346
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.07.014/
DO  - 10.1016/j.crma.2008.07.014
LA  - en
ID  - CRMATH_2008__346_17-18_975_0
ER  - 
%0 Journal Article
%A Jammazi, Chaker
%T Finite-time partial stabilizability of chained systems
%J Comptes Rendus. Mathématique
%D 2008
%P 975-980
%V 346
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.07.014/
%R 10.1016/j.crma.2008.07.014
%G en
%F CRMATH_2008__346_17-18_975_0
Jammazi, Chaker. Finite-time partial stabilizability of chained systems. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 975-980. doi : 10.1016/j.crma.2008.07.014. http://www.numdam.org/articles/10.1016/j.crma.2008.07.014/

[1] Bhat, S.; Bernstein, D. Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Automatic Control, Volume 43 (1998) no. 5, pp. 678-682

[2] Brockett, R.W. Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, Progr. Math., vol. 27, 1983, pp. 181-191

[3] Bushnell, L.G.; Tilbury, D.M.; Sastry, S.S. Steering three-input nonholonomic systems: the fire truck example, Int. J. Robotics Res., Volume 14 (1995) no. 4, pp. 366-381

[4] Ceragioli, F.M. Some remarks on stabilization by means of discontinuous feedbacks, Systems Control Lett., Volume 45 (2002) no. 4, pp. 271-281

[5] Coron, J.-M. Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems, Volume 5 (1992), pp. 295-312

[6] Coron, J.-M. Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws, SIAM J. Control Optim., Volume 33 (1995) no. 3, pp. 804-833

[7] Coron, J.-M. Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, 2007

[8] J.-M. Coron, B. d'Andréa Novel, Smooth stabilizing time-varying control laws for a class of nonlinear systems. Applications to mobile robots, in: IFAC Nonlinear Control Systems Design, 1992, pp. 413–418

[9] J.-M. Coron, J.-B. Pomet, A remark on the design of time-varying stabilizing feedback laws for controllable systems without drift, in: M. Fliess (Ed.), IFAC Nonlinear Control Systems Design, 1992, pp. 397–401

[10] Coron, J.-M.; Rosier, L. A relation between continuous time-varying and discontinuous feedback stabilization, J. Math. Systems Estimation and Control, Volume 4 (1994), pp. 67-84

[11] Huang, X.; Lin, W.; Yang, B. Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, Volume 41 (2005), pp. 881-888

[12] M'Closkey, R.T.; Murray, R.M. Exponential stabilization of driftless nonlinear control systems using homogeneous feedback, IEEE Trans. Automatic Control, Volume 42 (1997), pp. 614-628

[13] Samson, C. Velocity and torque feedback control of a nonholonomic cart, Advanced Robot Control, Proceeding of International Workshop on Nonlinear and Adaptive Control, Lecture Notes in Control and Information Sciences, vol. 162, Springer-Verlag, 1991, pp. 125-151

[14] Samson, C. Control of chained systems: Application to path following and time-varying point-stabilization of mobile robots, IEEE Trans. Automatic Control, Volume 40 (1995) no. 1, pp. 64-77

[15] Sontag, E.D. Mathematical Control Theory: Deterministic Finite Dimensional Systems, Applied Mathematics, vol. 6, Springer-Verlag, New York, 1990

[16] E.D. Sontag, H.J. Sussmann, Remarks on continuous feedback, in: IEEE CDC, Albuquerque, 1980, pp. 916–921

[17] Sussmann, H.J. Subanalytic sets and feedback control, J. Differential Equations, Volume 31 (1979) no. 1, pp. 31-52

[18] Vorotnikov, V.I. Partial Stability and Control, Birkhäuser, 1998

Cited by Sources: