Algebraic Geometry
On semistable vector bundles over curves
Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 981-984.

Let X be a geometrically irreducible smooth projective curve defined over a field k, and let E be a vector bundle on X. Then E is semistable if and only if there is a vector bundle F on X such that Hi(X,FE)=0 for i=0,1. We give an explicit bound for the rank of F. The proof uses a result of Popa for the case where k is algebraically closed.

Soit X une courbe projective lisse géométriquement irréductible définie sur un corps k, et soit E un fibré vectoriel sur X. E est semi-stable si et seulement s'il y a un fibré vectoriel F sur X tel que Hi(X,FE)=0 pour i=0,1. Nous donnons une borne explicite pour le rang de F. La preuve utilise un résultat de Popa pour le cas où k est algébriquement clos.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.07.016
Biswas, Indranil 1; Hein, Georg 2; Hoffmann, Norbert 3

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
2 Universität Duisburg-Essen, Fachbereich Mathematik, 45117 Essen, Germany
3 Freie Universität Berlin, Institut für Mathematik, Arnimallee 3, 14195 Berlin, Germany
@article{CRMATH_2008__346_17-18_981_0,
     author = {Biswas, Indranil and Hein, Georg and Hoffmann, Norbert},
     title = {On semistable vector bundles over curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {981--984},
     publisher = {Elsevier},
     volume = {346},
     number = {17-18},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.016/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Hein, Georg
AU  - Hoffmann, Norbert
TI  - On semistable vector bundles over curves
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 981
EP  - 984
VL  - 346
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.07.016/
DO  - 10.1016/j.crma.2008.07.016
LA  - en
ID  - CRMATH_2008__346_17-18_981_0
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Hein, Georg
%A Hoffmann, Norbert
%T On semistable vector bundles over curves
%J Comptes Rendus. Mathématique
%D 2008
%P 981-984
%V 346
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.07.016/
%R 10.1016/j.crma.2008.07.016
%G en
%F CRMATH_2008__346_17-18_981_0
Biswas, Indranil; Hein, Georg; Hoffmann, Norbert. On semistable vector bundles over curves. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 981-984. doi : 10.1016/j.crma.2008.07.016. http://www.numdam.org/articles/10.1016/j.crma.2008.07.016/

[1] Biswas, I.; Hein, G. Generalization of a criterion for semistable vector bundles, 2008 (preprint) | arXiv

[2] Faltings, G. Stable G-bundles and projective connections, J. Algebraic Geom., Volume 2 (1993), pp. 507-568

[3] Kunz, E. Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985

[4] Langton, S.G. Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math., Volume 101 (1975), pp. 88-110

[5] Popa, M. Dimension estimates for Hilbert schemes and effective base point freeness on moduli spaces of vector bundles on curves, Duke Math. J., Volume 107 (2001), pp. 469-495

Cited by Sources: