Functional Analysis
The Szegő and Avram–Parter theorems for general test functions
Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 749-752.

The Szegő and Avram–Parter theorems give the limit of the arithmetic mean of the values of certain test functions at the eigenvalues of Hermitian Toeplitz matrices and the singular values of arbitrary Toeplitz matrices, respectively, as the matrix dimension goes to infinity. We show that, surprisingly, these theorems are not true for every continuous, nonnegative, and monotonously increasing test function and thus do not hold whenever they make sense. On the other hand, we prove the two theorems in a general form which includes all versions known so far.

Les théorèmes de Szegő et d'Avram–Parter donnent la limite de la moyenne arithmetique des valeurs d'une ‘bonne’ fonction test prise en les valeurs propres de matrices de Toeplitz hermitiennes et en les valeurs singulières de matrices de Toeplitz arbitraires quand la dimension de la matrice tend vers l'infini. Nous montrons que, de manière surprenante, ces théorèmes ne sont pas valables pour une fonction test continue, positive et croissante arbitraire, alors même que leur énoncé a bien un sens. En revanche, nous prouvons les deux théorémes sous une forme générale qui inclut toutes les versions connues jusqu'ici.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.06.002
Böttcher, Albrecht 1; Grudsky, Sergei M. 2; Maksimenko, Egor A. 3

1 Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany
2 Departamento de Matemáticas, CINVESTAV del I.P.N., Apartado Postal 14-740, 07000 México, D.F., Mexico
3 Department of Mathematics, Mechanics and Computer Science, Southern Federal University, 344006 Rostov-on-Don, Russia
@article{CRMATH_2008__346_13-14_749_0,
     author = {B\"ottcher, Albrecht and Grudsky, Sergei M. and Maksimenko, Egor A.},
     title = {The {Szeg\H{o}} and {Avram{\textendash}Parter} theorems for general test functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {749--752},
     publisher = {Elsevier},
     volume = {346},
     number = {13-14},
     year = {2008},
     doi = {10.1016/j.crma.2008.06.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.06.002/}
}
TY  - JOUR
AU  - Böttcher, Albrecht
AU  - Grudsky, Sergei M.
AU  - Maksimenko, Egor A.
TI  - The Szegő and Avram–Parter theorems for general test functions
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 749
EP  - 752
VL  - 346
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.06.002/
DO  - 10.1016/j.crma.2008.06.002
LA  - en
ID  - CRMATH_2008__346_13-14_749_0
ER  - 
%0 Journal Article
%A Böttcher, Albrecht
%A Grudsky, Sergei M.
%A Maksimenko, Egor A.
%T The Szegő and Avram–Parter theorems for general test functions
%J Comptes Rendus. Mathématique
%D 2008
%P 749-752
%V 346
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.06.002/
%R 10.1016/j.crma.2008.06.002
%G en
%F CRMATH_2008__346_13-14_749_0
Böttcher, Albrecht; Grudsky, Sergei M.; Maksimenko, Egor A. The Szegő and Avram–Parter theorems for general test functions. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 749-752. doi : 10.1016/j.crma.2008.06.002. http://www.numdam.org/articles/10.1016/j.crma.2008.06.002/

[1] A. Böttcher, S.M. Grudsky, M. Schwartz, Some problems concerning the test functions in the Szegő and Avram–Parter theorems, Operator Theory: Advances and Applications, in press

[2] Böttcher, A.; Silbermann, B. Analysis of Toeplitz Operators, Springer, Berlin, 2006

[3] Golinskii, B.L.; Ibragimov, I.A. A limit theorem of G. Szegő, Math. USSR Izvestiya, Volume 5 (1971), pp. 421-446

[4] Serra Capizzano, S. Test functions, growth conditions and Toeplitz matrices, Rend. Circ. Mat. Palermo, Ser. II, Volume 68 (2002) no. Suppl., pp. 791-795

[5] Serra Capizzano, S.; Tilli, P. On unitarily invariant norms of matrix-valued linear positive operators, J. Inequal. Appl., Volume 7 (2002), pp. 309-330

[6] Simon, B. Orthogonal Polynomials on the Unit Circle, Part 1, Classical Theory, Amer. Math. Soc., Providence, RI, 2005

[7] Tilli, P. A note on the spectral distribution of Toeplitz matrices, Linear and Multilinear Algebra, Volume 45 (1998), pp. 147-159

[8] Zamarashkin, N.L.; Tyrtyshnikov, E.E. Distribution of the eigenvalues and singular numbers of Toeplitz matrices under weakened requirements on the generating function, Sb. Math., Volume 188 (1997), pp. 1191-1201

Cited by Sources: