Partial Differential Equations
Gradient and Hölder estimates for positive solutions of Pucci type equations
Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 527-532.

We present some estimates for positive viscosity solutions of a class of fully non-linear elliptic equations including the extremal Pucci equations, generalizing some results for linear equations recently established by Y.Y. Li and L. Nirenberg.

Le but de cette Note est de donner des estimations pour les solutions de viscosité non négatives d'une classe d'équations complètement non linéaires comprenante les équations extrémales de Pucci, en généralisant ainsi des résultats récents dues à Y.Y. Li et L. Nirenberg.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.03.004
Capuzzo Dolcetta, Italo 1; Vitolo, Antonio 2

1 Dipartimento di Matematica, Università di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy
2 Dipartimento di Matematica e Informatica, Università di Salerno, P. Grahamstown, 84084 Fisciano (SA), Italy
@article{CRMATH_2008__346_9-10_527_0,
     author = {Capuzzo Dolcetta, Italo and Vitolo, Antonio},
     title = {Gradient and {H\"older} estimates for positive solutions of {Pucci} type equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {527--532},
     publisher = {Elsevier},
     volume = {346},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crma.2008.03.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.004/}
}
TY  - JOUR
AU  - Capuzzo Dolcetta, Italo
AU  - Vitolo, Antonio
TI  - Gradient and Hölder estimates for positive solutions of Pucci type equations
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 527
EP  - 532
VL  - 346
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.03.004/
DO  - 10.1016/j.crma.2008.03.004
LA  - en
ID  - CRMATH_2008__346_9-10_527_0
ER  - 
%0 Journal Article
%A Capuzzo Dolcetta, Italo
%A Vitolo, Antonio
%T Gradient and Hölder estimates for positive solutions of Pucci type equations
%J Comptes Rendus. Mathématique
%D 2008
%P 527-532
%V 346
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.03.004/
%R 10.1016/j.crma.2008.03.004
%G en
%F CRMATH_2008__346_9-10_527_0
Capuzzo Dolcetta, Italo; Vitolo, Antonio. Gradient and Hölder estimates for positive solutions of Pucci type equations. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 527-532. doi : 10.1016/j.crma.2008.03.004. http://www.numdam.org/articles/10.1016/j.crma.2008.03.004/

[1] Cabrè, X.; Caffarelli, L.A. Interior C2,α regularity theory for a class of nonconvex fully nonlinear elliptic equations, J. Math. Pures Appl. (9), Volume 82 (2003) no. 5, pp. 573-612

[2] Caffarelli, L.A. Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., Volume 130 (1989), pp. 189-213

[3] Caffarelli, L.A.; Cabrè, X. Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995

[4] Crandall, M.G.; Ishii, H.; Lions, P.L. User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67

[5] Evans, L.C. Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math., Volume 25 (1982), pp. 333-363

[6] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, New York, 1983

[7] Ishii, H.; Lions, P.L. Viscosity solutions of fully nonlinear second order elliptic partial differential equations, J. Differential Equations, Volume 83 (1990), pp. 26-78

[8] Li, Y.Y.; Nirenberg, L. Generalization of a well-known inequality, Progress in Nonlinear Differential Equations and Their Applications, vol. 66, 2005, pp. 365-370

Cited by Sources: