Differential Geometry
A uniqueness result for maximal surfaces in Minkowski 3-space
Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 785-790.

In this Note, we study the Dirichlet problem associated to the maximal surface equation. We prove the uniqueness of bounded solutions to this problem in unbounded domains in R2.

Dans cette Note, nous étudions le problème de Dirichlet associé à l'équation des surfaces maximales. Nous démontrons l'unicité des solutions bornées de ce problème sur des domaines non bornés de R2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.05.014
Mazet, Laurent 1

1 Laboratoire de mathématiques et physique théorique, faculté des sciences et techniques, université de Tours, parc de Grandmont, 37200 Tours, France
@article{CRMATH_2007__344_12_785_0,
     author = {Mazet, Laurent},
     title = {A uniqueness result for maximal surfaces in {Minkowski} 3-space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {785--790},
     publisher = {Elsevier},
     volume = {344},
     number = {12},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.05.014/}
}
TY  - JOUR
AU  - Mazet, Laurent
TI  - A uniqueness result for maximal surfaces in Minkowski 3-space
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 785
EP  - 790
VL  - 344
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.05.014/
DO  - 10.1016/j.crma.2007.05.014
LA  - en
ID  - CRMATH_2007__344_12_785_0
ER  - 
%0 Journal Article
%A Mazet, Laurent
%T A uniqueness result for maximal surfaces in Minkowski 3-space
%J Comptes Rendus. Mathématique
%D 2007
%P 785-790
%V 344
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.05.014/
%R 10.1016/j.crma.2007.05.014
%G en
%F CRMATH_2007__344_12_785_0
Mazet, Laurent. A uniqueness result for maximal surfaces in Minkowski 3-space. Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 785-790. doi : 10.1016/j.crma.2007.05.014. http://www.numdam.org/articles/10.1016/j.crma.2007.05.014/

[1] Bartnik, R.; Simon, L. Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., Volume 87 (1982/83), pp. 131-152

[2] Collin, P.; Krust, R. Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés, Bul. Soc. Math. France, Volume 119 (1991), pp. 443-462

[3] Fernández, I.; López, F.J.; Souam, R. The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz–Minkowski space, Math. Ann., Volume 332 (2005), pp. 605-643

[4] I. Fernández, F.J. López, R. Souam, The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz–Minkowski space L3, preprint

[5] Klyachin, A.A. Solvability of the Dirichlet problem for the equation of maximal surfaces with singularities in unbounded domains, Dokl. Akad. Nauk, Volume 342 (1995), pp. 162-164

[6] Klyachin, A.A.; Miklyukov, V.M. The existence of solutions with singularities of the equation of maximal surfaces in a Minkowski space, Mat. Sb., Volume 184 (1993), pp. 103-124

[7] Mazet, L. The Dirichlet problem for minimal surfaces equation and Plateau problem at infinity, J. Inst. Math. Jussieu., Volume 3 (2004), pp. 397-420

[8] L. Mazet, Construction de surfaces minimales par résolution du problème de Dirichlet, PhD. Thesis, Université P. Sabatier, Toulouse, France, 2004

Cited by Sources: