Differential Geometry/Dynamical Systems
Periodic orbits in the case of a zero eigenvalue
Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 779-784.

We will show that if a dynamical system has enough constants of motion then a Moser–Weinstein type theorem can be applied for proving the existence of periodic orbits in the case when the linearized system is degenerate.

On va montrer que si un système dynamique a assez d'intégrales premières, alors on peut utiliser un théorème de type Moser–Weinstein pour prouver l'existence d'orbites périodiques, même si le système linéarisé associé est dégénéré.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.05.003
Birtea, Petre 1; Puta, Mircea 1; Tudoran, Răzvan Micu 1

1 Seminarul de Geometrie şi Topologie, West University of Timişoara, B-dul V. Pârvan no 4, 300223 Timişoara, Romania
@article{CRMATH_2007__344_12_779_0,
     author = {Birtea, Petre and Puta, Mircea and Tudoran, R\u{a}zvan Micu},
     title = {Periodic orbits in the case of a zero eigenvalue},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {779--784},
     publisher = {Elsevier},
     volume = {344},
     number = {12},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.05.003/}
}
TY  - JOUR
AU  - Birtea, Petre
AU  - Puta, Mircea
AU  - Tudoran, Răzvan Micu
TI  - Periodic orbits in the case of a zero eigenvalue
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 779
EP  - 784
VL  - 344
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.05.003/
DO  - 10.1016/j.crma.2007.05.003
LA  - en
ID  - CRMATH_2007__344_12_779_0
ER  - 
%0 Journal Article
%A Birtea, Petre
%A Puta, Mircea
%A Tudoran, Răzvan Micu
%T Periodic orbits in the case of a zero eigenvalue
%J Comptes Rendus. Mathématique
%D 2007
%P 779-784
%V 344
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.05.003/
%R 10.1016/j.crma.2007.05.003
%G en
%F CRMATH_2007__344_12_779_0
Birtea, Petre; Puta, Mircea; Tudoran, Răzvan Micu. Periodic orbits in the case of a zero eigenvalue. Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 779-784. doi : 10.1016/j.crma.2007.05.003. http://www.numdam.org/articles/10.1016/j.crma.2007.05.003/

[1] Dubrovin, B.; Krichever, I.; Novikov, S. Integrable Systems, Encyclopedia of Math. Sci., vol. 4, Springer-Verlag, Berlin, 1990, pp. 173-280

[2] Lyapunov, M.A. Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse, Volume 2 (1907), pp. 203-474

[3] Moser, J. Periodic orbits and a theorem by Alan Weinstein, Comm. Pure Appl. Math., Volume 29 (1976), pp. 727-747

[4] Weinstein, A. Normal modes for non-linear Hamiltonian systems, Invent. Math., Volume 20 (1973), pp. 47-57

Cited by Sources: