Numerical Analysis
On the Hermite interpolation
Comptes Rendus. Mathématique, Volume 340 (2005) no. 2, pp. 177-180.

In a given space of sufficiently differentiable functions, we show that the Hermite interpolation based on an arbitrary number of distinct points is possible if and only if it is possible when based on at most two distinct points.

Si, dans un espace donné de fonctions suffisamment différentiables, tout problème d'interpolation d'Hermite impliquant au plus deux points distincts admet une solution unique, il en est de même de tout problème d'interpolation d'Hermite impliquant un nombre quelconque de points distincts.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.11.004
Mazure, Marie-Laurence 1

1 Laboratoire de modélisation et calcul (LMC-IMAG), université Joseph Fourier, BP 53, 38041 Grenoble cedex, France
@article{CRMATH_2005__340_2_177_0,
     author = {Mazure, Marie-Laurence},
     title = {On the {Hermite} interpolation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {177--180},
     publisher = {Elsevier},
     volume = {340},
     number = {2},
     year = {2005},
     doi = {10.1016/j.crma.2004.11.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.11.004/}
}
TY  - JOUR
AU  - Mazure, Marie-Laurence
TI  - On the Hermite interpolation
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 177
EP  - 180
VL  - 340
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.11.004/
DO  - 10.1016/j.crma.2004.11.004
LA  - en
ID  - CRMATH_2005__340_2_177_0
ER  - 
%0 Journal Article
%A Mazure, Marie-Laurence
%T On the Hermite interpolation
%J Comptes Rendus. Mathématique
%D 2005
%P 177-180
%V 340
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.11.004/
%R 10.1016/j.crma.2004.11.004
%G en
%F CRMATH_2005__340_2_177_0
Mazure, Marie-Laurence. On the Hermite interpolation. Comptes Rendus. Mathématique, Volume 340 (2005) no. 2, pp. 177-180. doi : 10.1016/j.crma.2004.11.004. http://www.numdam.org/articles/10.1016/j.crma.2004.11.004/

[1] Karlin, S.; Studden, W.J. Tchebycheff Systems, Wiley Interscience, NY, 1966

[2] M.-L. Mazure, Chebsyhev spaces and Bernstein bases, Preprint

[3] Schumaker, L.L. Spline Functions, Wiley Interscience, NY, 1981

Cited by Sources: