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Abstract

In a given space of sufficiently differentiable functions, we show that the Hermite interpolation based on an a
number of distinct points is possible if and only if it is possible when based on at most two distinct points.To cite this ar-
ticle: M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur l’interpolation d’Hermite. Si, dans un espace donné de fonctions suffisamment différentiables, tout problème
polation d’Hermite impliquant au plus deux points distincts admet une solution unique, il en est de même de tout p
d’interpolation d’Hermite impliquant un nombre quelconque de points distincts.Pour citer cet article : M.-L. Mazure, C. R.
Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Hermite interpolation

Throughout the Note,n denotes a fixed nonnegative integer andE a given(n + 1)-dimensional space ofCn

functions defined on a given real intervalI with a nonempty interior. Given any integerr, 1� r � n + 1, we use
the expressionHermite interpolation problem inE (based onr distinct points), for any problem of the following
form:

Find U ∈ E such thatU(j)(τi) = αi,j , 1 � i � r, 0 � j � µi − 1,

in which τ1, . . . , τr are pairwise distinct points inI , µ1, . . . ,µr are positive numbers such that
∑r

i=1 µi = n + 1,
andαi,j , 1� i � r, 0� j � µi − 1, are any real numbers. This includesTaylor interpolation(which corresponds
to the particular caser = 1) as well asLagrange interpolation(which corresponds tor = n + 1).
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The result we present here is the following:

Theorem 1.1.If any Hermite interpolation problem based on at most two distinct points has a unique so
in E , then any Hermite interpolation problem has a unique solution inE .

2. Extended Chebyshev spaces

As is well-know, any Hermite interpolation problem based has a unique solution in the polynomial spacPn of
degreen on I := R. The underlying reason is that any nonzero polynomial of degree less than or equal ton has
at mostn zeros, counting multiplicities. Hermiteinterpolation is possible in other spaces, e.g. the space spa
by the functions 1,cosx,sinx on any intervalI strictly contained in some[a, a + 2π]. Such spaces are natur
generalisations of polynomial spaces see [1,3]).

Definition 2.1. The spaceE is said to be anExtended Chebyshev space(in short, EC-space) onI if any Hermite
interpolation problem has a unique solution inE .

How to check that a given space is an EC-space? Generalising the polynomial case, it is usual to characterise E
spaces in terms of bounds of the total number of zeros (see (i) below) or in terms of regularity of certaincollocation
matrices(see (ii) below). To these two classical properties, the following proposition adds a less classical
terms of existence of certain bases with prescribed zeros.

Proposition 2.2.Choosing a basis(U0, . . . ,Un) in E , let us setU := (U0, . . . ,Un)
T. Then,E is an EC-space onI

if and only if it satisfies any of the following equivalent properties:

(i) any nonzero element ofE vanishes at mostn times onI (with multiplicities);
(ii) for any r � 1, any positive numbersµ1, . . . ,µr with

∑r
i=1 µi = n + 1, any pairwise distinctτ1, . . ., τr ∈ I ,

we have

det
(
U(τ1), . . . ,U(µ1−1)(τ1), . . . ,U(τr ), . . . ,U(µr−1)(τr)

) �= 0;
(iii) given any sequencex0 � x1 � x2 � · · · � xn < xn+1 � x2n � x2n+1 in I , there exists a basis(V0, . . . , Vn) of

E such that, for0 � i � n, Vi vanishes (with multiplicities) on(xi+1, . . . , xi+n), but it vanishes neither o
(xi, . . . , xi+n) nor on(xi+1, . . . , xi+n+1) (see the meaning below).

Properties (i) and (iii) require some explanation on the vocabulary we used. We first have to give sens
count of multiples zeros for a functionU ∈ Cn(I). Given anyx ∈ I , and any nonnegative integerk � n+1, we say
thatU vanishesk times atx if U(x) = · · · = U(k−1)(x) = 0. In any subspace ofCn(I), the multiplicity of a given
zero is counted this way up ton + 1. On the other hand, givenk � n + 1 non necessarily distinctx1, . . . , xk ∈ I ,
among which exactlyµi are equal toτi (with τ1 < · · · < τr and with positiveµ1, . . . ,µr such thatµ1 + · · ·+µr =
k), we say thatU vanishes (with multiplicities) on(x1, . . . , xk) if U vanishesµi times atτi for 1 � i � r.

3. EC-spaces and W-spaces

As a particular case of Hermite interpolation, ifE is an EC-space, Taylor interpolation is always possible. Mor
generally:

Definition 3.1.The spaceE is said to be aW-spaceon I if any Taylor interpolation problem has a unique solut
in E .

In casek � n, we say thatU ∈ E vanishes exactlyk times atx if U(x) = · · · = U(k−1)(x) = 0 andU(k)(x) �= 0.
Similarly to Proposition 2.2, we cancharacterise W-spaces as follows.
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Proposition 3.2.The spaceE is a W-space onI if and only if it satisfies any of the following equivalent requi
ments:

(i) ′ for anyx ∈ I , any nonzero element ofE vanishes at mostn times atx;
(ii) ′ the Wronskian of(U0, . . . ,Un) never vanishes onI , i.e.,

W(U0, . . . ,Un)(x) := det
(
U(x), . . . ,U(n)(x)

) �= 0, x ∈ I ;
(iii) ′ for anyx ∈ I , there exists a basis(V0, . . . , Vn) of E such that, for0 � i � n, Vi vanishes exactlyi times atx.

In Proposition 2.2 as well as in Proposition 3.2, the second property is often the practical way to check whethe
given space is, or is not, an EC-space or a W-space. Proving (ii)′ is obviously easier than proving (ii), and of cour
(ii) ′ can be satisfied while (ii) is not. For instance the Wronskian of the three functions 1,cosx,sinx, never vanishe
on R although the space they span is an EC-space only on any interval strictly contained in some[a, a + 2π].

Below we recall a classical result which establishes a strong interesting link between EC-spaces and W-spa
It says that, in theory, instead of proving(ii), it may be possible to limit ourselves to Wronskians in the follow
sense.

Theorem 3.3.Suppose the existence of a nested sequence ofW -spaces onI

E0 ⊂ E1 ⊂ · · ·En−1 ⊂ En = E,

the spaceEk being(k + 1)-dimensional for0� k � n. ThenE is an EC-space onI .

Note that the converse property is true when the intervalI is closed and bounded. The latter result means
Hermite interpolation is possible in the spaceE as soon as Taylor interpolation is possible in any subspace of
nested sequence of subspaces. The simplest illustration of Theorem 3.3 is the polynomial case, with th
sequenceEi := Pi . Beyond the simple framework of polynomials, Theorem 3.3 states a crucial and non
theoretical result. If, in practice, it does not provide direct help to show that a given space is, or is not, an EC-sp
it will be one of the key-points in the proof of Theorem 1.1.

4. Proof of Theorem 1.1

By analogy with the Bernstein polynomialsBn
i (x) := (

n
i

)
(1 − x)n−ixi , 0 � i � n, let us first introduce the

following definition.

Definition 4.1. Givena, b ∈ I , with a �= b, we say that a basis(B0, . . . ,Bn) of E is a Bernstein-like basis relativ
to (a, b) if, for 0 � i � n, Bi vanishes exactlyi times ata and exactly(n − i) times atb.

Clearly,(B0, . . . ,Bn) is a Bernstein-like basis relative to(a, b) if and only if (Bn, . . . ,B0) is a Bernstein-like
basis relative to(b, a). On the other hand, ifa < b, (B0, . . . ,Bn) is a Bernstein-like basis relative to(a, b) if and
only if the functionsVi := Bn−i , 0� i � n, satisfy the properties required in (iii) of Proposition 2.2 relative to
particular sequencex0 := · · · := xn := a, xn+1 := · · · := x2n+1 := b.

Bernstein-like bases are basic tools to prove Theorem 1.1. Indeed, modelled on Propositions 2.2 and 3.2, we
state the following result.

Proposition 4.2.Any Hermite interpolation problem based on at most two distinct points has a unique so
in E if and only if one of the following equivalent statement is satisfied.

(i) ′′ given any distincta, b ∈ I , any nonzero element ofE vanishes at mostn times on the set{a, b};
(ii) ′′ given any distincta, b ∈ I and any nonnegative integersi, j such thati + j = n + 1, we have

det
(
U(a), . . . ,U(i−1)(a),U(b), . . . ,U(j−1)(b)

) �= 0;
(iii) ′′ E possesses a Bernstein-like basis relative to any pair of distinct points ofI .
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In other words, Theorem 1.1 says that, in any of the properties (i)–(iii) of Proposition 2.2, instead of consideri
an arbitrary number (� n + 1) of pairwise distinct points ofI , we can limit ourselves to at most two arbitra
distinct points ofI . The practical interest of Theorem 1.1 is clear: obviously, proving (ii)′′ is significantly easie
than proving (ii).

Sketch of the proof of Theorem 1.1.We suppose thatE satisfies (i)′′–(iii) ′′, and we want to prove thatE is an
EC-space onI . Here are the main steps.

1) Prove thatE is an EC-space on any intervalJ with a nonempty interior assumed to be strictly contained iI .
2) In caseI = [α,β], prove thatE can be extended into an(n + 1)-dimensional spaceE1 of Cn functions on

some intervalI1 = [α1, β1], with α1 < α, β1 > β , so thatE1 satisfies (ii)′′ on I1.
3) On account of part 1), the proof is complete ifI is open or half-open. IfI is a closed bounded interval[α,β],

E is proved to be an EC-space onI by applying part 1) to the extensionE1 constructed in part 2).

Proof of part 1. Selecta ∈ J , b ∈ I \ J , and let(B0, . . . ,Bn) be a Bernstein-like basis relative to(a, b). For
0 � k � n, let Ek denote the(k + 1)-dimensional space spanned byB0, . . . ,Bk . According to Theorem 3.3 an
to (i)′, it is sufficient to check that any nonzero elementU ∈ Ek vanishes at mostk times at any given pointx ∈ J .
From (i)′′, we know thatU vanishes at mostn times on{x, b}, and from the definition of a Bernstein-like basis,
know that it vanishes at leastn − k times atb.

Proof of part 2. Suppose thatI = [α,β]. With no loss of generality, one can assume each functionU0, . . . ,Un to
be defined andCn onR. For a given integeri, 1� i � n + 1, consider the function

Ψi(x, y) := det
(
U(x), . . . ,U(i−1)(x),U(y), . . . ,U(j−1)(y)

)
, x, y ∈ R,

with j := n + 1− i. From (ii)′′ we know that

Ψi(x, y) �= 0 for all x, y ∈ I, x �= y. (1)

One can prove that (see [2, Lemma 3.1])

Ψi(x, y) = (x − y)ij Ψ̃i (x, y), x, y ∈ R, (2)

where the functioñΨi is continuous onI2, and satisfies

Ψ̃i(x, x) = 1!2! · · · (i − 1)! 1!2! · · · (j − 1)!
1!2! · · ·n! det

(
U(x), . . . ,U(n)(x)

)
, x ∈ I. (3)

Using (1), (2), and (3), one can see thatΨ̃i does not vanish on the whole ofI2. We can thus findεi > 0 such that
Ψ̃i does not vanish on[α − εi, β + εi]2. Since there are only a finite number of possible choices fori, we can find
a positiveε so that (ii)′′ is still satisfied for any pair(a, b) of distinct points ofI1 := [α − ε,β + ε].

Detailed proofs can be found in [2].
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