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Abstract

In a given space of sufficiently differentiable functions, we show that the Hermite interpolation based on an arbitrary
number of distinct points is possible if and only if it is possible when based on at most two distinct poicite this ar-
ticle: M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur l'interpolation d’Hermite. Si, dans un espace donné de fonctions suffisamment différentiables, tout probléme d’inter-
polation d'Hermite impliquant au plus deux points distincts admet une solution unique, il en est de méme de tout probléme
d’interpolation d’Hermite impliquant un nhombre quelconque de points distiRots. citer cet article: M.-L. Mazure, C. R.

Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Hermite interpolation

Throughout the Note; denotes a fixed nonnegative integer &hd given(n + 1)-dimensional space af”
functions defined on a given real interdalvith a nonempty interior. Given any integerl <r <n + 1, we use
the expressiolermite interpolation problem i& (based orr distinct point3, for any problem of the following
form:

FindU € € suchthaU“)(r;) =a; j, 1<i<r, 0<j<p—1,

in whichty, ..., 7, are pairwise distinct points if, 1, ..., u, are positive numbers such thal_, u;i =n +1,
ande; j, 1<i <r, 0< j < — 1, are any real numbers. This includisylor interpolation(which corresponds
to the particular case= 1) as well ad.agrange interpolatiorfwhich corresponds to=n + 1).
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The result we present here is the following:

Theorem 1.1.1f any Hermite interpolation problem based on at most two distinct points has a unique solution
in £, then any Hermite interpolation problem has a unique solutiof.in

2. Extended Chebyshev spaces

As is well-know, any Hermite interpolation problem based has a unique solution in the polynomiai%paice
degreen on I :=R. The underlying reason is that any nonzero polynomial of degree less than or equzso
at mostn zeros, counting multiplicities. Hermitaterpolation is possible in other spaces, e.g. the space spanned
by the functions 1cosx, sinx on any intervall strictly contained in som&u, a + 2r]. Such spaces are natural
generalisations of polynomial spaces see [1,3]).

Definition 2.1. The space is said to be afExtended Chebyshev spgae short, EC-space) oh if any Hermite
interpolation problem has a unique solutior€in

How to check that a given space is an EC-space? Geriagdtiee polynomial case, it is usual to characterise EC-
spaces in terms of bounds of the total number of zeros (see (i) below) or in terms of regularity ofcdhbaiztion
matrices(see (ii) below). To these two classical properties, the following proposition adds a less classical one, in
terms of existence of certain bases with prescribed zeros.

Proposition 2.2.Choosing a basisUo, . .., U,) in &, letus seU := (Uy, ..., U,)". Then,£ is an EC-space ot
if and only if it satisfies any of the following equivalent propetrties

(i) any nonzero element éfvanishes at most times on/ (with multiplicitie;
(i) for anyr > 1, any positive numbergs, ..., u, with }7_; u; =n + 1, any pairwise distincty, ..., 7, € 1,

we have
detf(U(zy), ..., U D(zy), ... Uz, ..., UV (g)) £0;
(i) given any sequence < x1 <x2 < -+ <Xy < Xp41 < X2, < x2441 IN I, there exists a basigy, ..., V,) of
£ such that, for0 < i < n, V; vanishes (with multiplicities) oxw; 1, ..., x;+,), but it vanishes neither on
(Xiy ..., Xitn) NOrON(x;j41, ..., Xxi+n+1) (See the meaning below

Properties (i) and (iii) require some explanation on the vocabulary we used. We first have to give sense to the
count of multiples zeros for a functidin e C"(I). Given anyx € I, and any nonnegative integek n + 1, we say
thatU vanishes times atx if U(x) =--- = U%=D(x) = 0. In any subspace @ (1), the multiplicity of a given
zero is counted this way up 0+ 1. On the other hand, given< n + 1 non necessarily distinat;, ..., xx € I,
among which exactly; are equal ta; (with 71 < - - - < 7, and with positiveus, ..., u, suchthajui +-- -+ u, =
k), we say thaty vanishes (with multiplicities) oy, ..., xi) if U vanishegu; times atr; for 1 <i <r.

3. EC-spaces and W-spaces

As a particular case of Hermite interpolationifs an EC-space, Taylor interfalon is always possible. More
generally:
Definition 3.1. The spac€ is said to be &V-spaceon I if any Taylor interpolation problem has a unique solution
in&.

In casek < n, we say that/ € £ vanishes exactly times atx if U(x) =---=U% "D (x) =0 andU® (x) 0.
Similarly to Proposition 2.2, we cacharacterise W-spaces as follows.



M.-L. Mazure / C. R. Acad. Sci. Paris, Ser. | 340 (2005) 177-180 179

Proposition 3.2.The space is a W-space oii if and only if it satisfies any of the following equivalent require-
ments

(i) for anyx € I, any nonzero element 6fvanishes at most times atx;
(i)’ the Wronskian ofUo, ..., U,) never vanishes oh, i.e.,

WU, ..., U)(x) :=defU(x),...,U"x) #£0, xel;
(iiiy” foranyx € I, there exists a basid/, ..., V) of £ such that, fol0 < i < n, V; vanishes exactlytimes atx.

In Proposition 2.2 as well as in Proposition 3.2, the seconggnty is often the practical way to check whether a
given space is, or is not, an EC-space or a W-space. Provihig @pviously easier than proving (ii), and of course
(i)’ can be satisfied while (i) is not. For instance the Wronskian of the three functionsd, sinx, never vanishes
onR although the space they span is an EC-space only on any interval strictly contained ifusomer].

Below we recall a classical result which establishesa@nsgtinteresting link between EC-spaces and W-spaces.
It says that, in theory, instead of provilig), it may be possible to limit ourselves to Wronskians in the following
sense.

Theorem 3.3.Suppose the existence of a nested sequenidesgaces orf
50C51C---5n_1C5n=5,
the space; being(k + 1)-dimensional fol0 < k < n. Then€ is an EC-space on.

Note that the converse property is true when the intehvalclosed and bounded. The latter result means that
Hermite interpolation is possible in the spatas soon as Taylor interpolation is possible in any subspace of some
nested sequence of subspaces. The simplest illustration of Theorem 3.3 is the polynomial case, with the neste
sequence; := P;. Beyond the simple framework of polynomials, Theorem 3.3 states a crucial and nontrivial
theoretical result. If, in practice, it does not providesdirhelp to show that a given space is, or is not, an EC-space,
it will be one of the key-points in the proof of Theorem 1.1.

4. Proof of Theorem 1.1

By analogy with the Bernstein polynomial' (x) := (})(1 — x)"~'x’, 0<i < n, let us first introduce the
following definition.

Definition 4.1. Givena, b € I, with a # b, we say that a basi®y, ..., B,) of £ is a Bernstein-like basis relative
to (a, b) if, for 0 < i < n, B; vanishes exactly times atz and exactlyn — i) times atb.

Clearly, (Bo, ..., By,) is a Bernstein-like basis relative ta, b) if and only if (3, ..., Bo) is a Bernstein-like
basis relative tdb, a). On the other hand, i < b, (By, ..., B,) is a Bernstein-like basis relative ta, b) if and
only if the functionsV; := B,,_;, 0<i < n, satisfy the properties required in (iii) of Proposition 2.2 relative to the
particular sequencey :=---:=x, :=a, Xp41:= "= X2p+1 := b.

Bernstein-like bases are basic tools to prove Thadtel . Indeed, modelled on Propositions 2.2 and 3.2, we can
state the following result.

Proposition 4.2. Any Hermite interpolation problem based on at most two distinct points has a unique solution
in & if and only if one of the following equivalent statement is satisfied.

()" given any distinct, b € I, any nonzero element fvanishes at most times on the sdu, b};
(ii)” given any distinct, b € I and any nonnegative integeirsj such that + j =n + 1, we have
defU(a), ..., U @), U®),...,uV D)) #£0;
(iiiy” & possesses a Bernstein-like basis relative to any pair of distinct poirits of
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In other words, Theorem 1.1 says that, in any of the pridge(i)—(iii) of Proposition 2.2, instead of considering
an arbitrary number< » + 1) of pairwise distinct points of, we can limit ourselves to at most two arbitrary
distinct points ofl. The practical interest of Theorem 1.1 is clear: obviously, proving @)significantly easier
than proving (ii).

Sketch of the proof of Theorem 1.1.We suppose thaf satisfies (iY—(iii)”, and we want to prove that is an
EC-space or. Here are the main steps.
1) Prove that is an EC-space on any intervalwith a nonempty interior assumed to be strictly containetl in
2) In casel = [a, B], prove that€ can be extended into an + 1)-dimensional spacé&; of C" functions on
some intervaly = [a1, B1], with a1 < «, B1 > B, so that&; satisfies (iif on I;.
3) On account of part 1), the proof is completd i open or half-open. If is a closed bounded intenal, 81,
£ is proved to be an EC-space o1y applying part 1) to the extensigh constructed in part 2).

Proof of part 1. Selecta € J, be I\ J, and let(By, ..., B,) be a Bernstein-like basis relative ta, ). For

0 < k < n, let & denote the(k + 1)-dimensional space spanned By, ..., B,. According to Theorem 3.3 and
to (i), it is sufficient to check that any nonzero elem&ng & vanishes at mogi times at any given point € J.
From (i)', we know that/ vanishes at most times on{x, b}, and from the definition of a Bernstein-like basis, we
know that it vanishes at least— k times atb.

Proof of part 2. Suppose that = [«, 8]. With no loss of generality, one can assume each funéfign. ., U, to
be defined and” onR. For a given integet, 1 <i < n + 1, consider the function

Wi (x, y) :=det(U(x),...,U D), U@p),....,u9 D), x,yeR,
with j :=n + 1 —i. From (ii)" we know that

Ui(x,y)#0 forallx,yel, x#y. (1)
One can prove that (see [2, Lemma 3.1])

W(x,y)=(x— ¥, y), x yeR, (2)
where the functio; is continuous o2, and satisfies

~ 1!2!-~-(i—1)!1!2!~-~('—1)! .

;i (x, x) = - L= 2 def(U(x). ...UM (), xel. 3)

Using (1), (2), and (3), one can see thatdoes not vanish on the whole #f. We can thus find; > 0 such that
lI/ does not vanish ofw — ¢;, B + &;1%. Since there are only a finite number of possible choices, fae can find
a positives so that (i) is still satisfied for any pai¢a, b) of distinct points ofl1 := [a — ¢, B + ¢].

Detailed proofs can be found in [2].
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