Mathematical Physics
A formal computation of the splitting for the Klein–Gordon operator
Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 657-660.

We study the semi-classical Klein–Gordon operator in the one dimensional case, for a double-well potential. We obtain a formal computation of the splitting in cases that were not yet studied.

On étudie l'opérateur de Klein–Gordon dans le cas de la dimension un, pour un potentiel présentant un double puits symétrique. On obtient une expression formelle du splitting dans des cas qui n'étaient pas envisagés auparavant.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.02.005
Servat, Emmanuelle 1

1 The Fields Institute, 222 College Street, Toronto, Ontario, M5T 3J1, Canada
@article{CRMATH_2004__338_8_657_0,
     author = {Servat, Emmanuelle},
     title = {A formal computation of the splitting for the {Klein{\textendash}Gordon} operator},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {657--660},
     publisher = {Elsevier},
     volume = {338},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crma.2004.02.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.02.005/}
}
TY  - JOUR
AU  - Servat, Emmanuelle
TI  - A formal computation of the splitting for the Klein–Gordon operator
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 657
EP  - 660
VL  - 338
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.02.005/
DO  - 10.1016/j.crma.2004.02.005
LA  - en
ID  - CRMATH_2004__338_8_657_0
ER  - 
%0 Journal Article
%A Servat, Emmanuelle
%T A formal computation of the splitting for the Klein–Gordon operator
%J Comptes Rendus. Mathématique
%D 2004
%P 657-660
%V 338
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.02.005/
%R 10.1016/j.crma.2004.02.005
%G en
%F CRMATH_2004__338_8_657_0
Servat, Emmanuelle. A formal computation of the splitting for the Klein–Gordon operator. Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 657-660. doi : 10.1016/j.crma.2004.02.005. http://www.numdam.org/articles/10.1016/j.crma.2004.02.005/

[1] Dimassi, M.; Sjöstrand, J. Spectral Asymptotics in the Semi-Classical Limit, London Math. Soc. Lecture Note Ser., vol. 268, Cambridge University Press, Cambridge, 1999

[2] Helffer, B.; Parisse, B. Comparaison entre la décroissance de fonctions propres pour les opérateurs de Dirac et de Klein–Gordon. Application à l'effet tunnel, Ann. Inst. H. Poincaré, Volume 60 (1994), pp. 147-187

[3] Helffer, B.; Sjöstrand, J. Multiple wells in the semi-classical limit I, Comm. Partial Differential Equations, Volume 9 (1984), pp. 337-408

[4] Reed, M.; Simon, B. Methods of Modern Mathematical Physics I–IV, Academic Press, New York, 1975

Cited by Sources: