Numerical Analysis
The wavelet Mortar method in the adaptative framework
Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 653-656.

This paper is concerned with the extension to the case of a nonuniform discretization of the definition of the Mortar wavelet method. Given a (biorthogonal) non-uniform wavelet space, satisfying a suitable cone (or tree) condition, we construct a multiplier space satisfying the requirements for stability and approximation.

Nous définissons l'extension de la méthode de Mortar en ondelettes dans le cadre d'une discrétisation non-uniforme, et construisons un espace de multiplicateurs, satisfaisant des hypothèses d'approximation et de stabilité, associé à des espaces d'ondelettes reliés par une condition de cône.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.11.034
Bertoluzza, Silvia 1; Piquemal, Anne-Sophie 1

1 IMATI-CNR, Via Ferrata 1, 27100 Pavia, Italy
@article{CRMATH_2004__338_8_653_0,
     author = {Bertoluzza, Silvia and Piquemal, Anne-Sophie},
     title = {The wavelet {Mortar} method in the adaptative framework},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {653--656},
     publisher = {Elsevier},
     volume = {338},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.034},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.11.034/}
}
TY  - JOUR
AU  - Bertoluzza, Silvia
AU  - Piquemal, Anne-Sophie
TI  - The wavelet Mortar method in the adaptative framework
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 653
EP  - 656
VL  - 338
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.11.034/
DO  - 10.1016/j.crma.2003.11.034
LA  - en
ID  - CRMATH_2004__338_8_653_0
ER  - 
%0 Journal Article
%A Bertoluzza, Silvia
%A Piquemal, Anne-Sophie
%T The wavelet Mortar method in the adaptative framework
%J Comptes Rendus. Mathématique
%D 2004
%P 653-656
%V 338
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.11.034/
%R 10.1016/j.crma.2003.11.034
%G en
%F CRMATH_2004__338_8_653_0
Bertoluzza, Silvia; Piquemal, Anne-Sophie. The wavelet Mortar method in the adaptative framework. Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 653-656. doi : 10.1016/j.crma.2003.11.034. http://www.numdam.org/articles/10.1016/j.crma.2003.11.034/

[1] Bernardi, C.; Maday, Y.; Patera, A.T. Domain decomposition by the Mortar element method (Kaper, H.G.; Garbey, M., eds.), Asymptotics and Numerical Methods for Partial Differential Equations with Critical Parameters, NATO Adv. Sci. Inst. Ser. C, vol. 384, 1993

[2] Bernardi, C.; Maday, Y.; Patera, A.T. A new nonconforming approach to domain decomposition: the Mortar element method, Nonlinear Differential Equations and their Applications, College de France Seminars, 1994

[3] S. Bertoluzza, V. Perrier, The Mortar method in the wavelet context, LAGA Tech. Rep. n. 1999-17, and I.A.N.-C.N.R. Report n. 1153, M2AN, 1999, in press

[4] S. Bertoluzza, V. Perrier, Coupling wavelets and finite elements by the Mortar method, I.A.N.-C.N.R. Report n. 1991, 2000

[5] S. Bertoluzza, A.S. Piquemal, The Mortar wavelet method in the adaptative case, I.A.N.-C.N.R. Report n. 1272, 2002

[6] Cohen, A. Numerical analysis of wavelet methods (Ciarlet, P.G.; Lions, J.-L., eds.), Handbook in Numerical Analysis, vol. VII, Elsevier, 1999

Cited by Sources: