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Abstract

We study the semi-classical Klein–Gordon operator in the one dimensional case, for a double-well potential. We
formal computation of the splitting in cases that were not yet studied.To cite this article: E. Servat, C. R. Acad. Sci. Paris,
Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un calcul formel du splitting pour l’opérateur de Klein–Gordon. On étudie l’opérateur de Klein–Gordon dans le cas
la dimension un, pour un potentiel présentant un double puits symétrique. On obtient une expression formelle du split
des cas qui n’étaient pas envisagés auparavant.Pour citer cet article : E. Servat, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and results

We are interested in the semi-classical Klein–Gordon operatorP = √
1− h2∆ + V , in the one-dimensiona

case. For(x, ξ) ∈ R2, we writep(x, ξ)=√
1+ ξ2 + V (x) the symbol ofP . We make the following assumption

onV :
(H1) V is smooth, even, has a finite minimum denotedE0 − 1, and lim|x|→∞V =E1 − 1>E0 − 1.
(H2) The minimum ofV is attained at only two points±x0, called potential wells, andV ′(±x0) �= 0.

Therefore, we know thatP has a self-adjoint extension [4] – still denotedP – and that its spectrum is discre
in [E0,E1[ [1]. Thanks to WKB constructions in a neigbourhood of±x0 [3], we can calculate the first eigenvalu
of P . The symmetry of the potential ensures that the two first eigenvalues are very close to each other, an
splitting their difference.
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Many papers deal with the calculation of the splitting for Schrödinger operators. In particular in [3], Helff
Sjöstrand define a matrix, that expresses the interaction between the potential wells of the problem. This in
matrix can be defined for the Klein–Gordon operator. In the case of a double well and assuming that:
(H) There is a unique minimal geodesic for the Agmon distanced = (1 − (V − E0)

2+)+dx2 between±x0, and it
lies in the region{x ∈ Rn, V (x) < E0}.

Helffer and Parisse obtain the following limit which gives an estimate for the splittings(h) [2]:

lim
h→0

s(h)eS/h√
h

= Cn(V ), with S = d(−x0, x0), (1)

whereCn(V ) can be calculated. Let us give an idea of their proof: define the operator with one wellP + βj ,
where forε0> 0, β1 ∈ C∞

0 (]x0 − ε0, x0 + ε0[), β1 � 0, β1(x0) > 0, andβ2(x)= β1(−x). Let uj , j = 1,2, be the
normalised eigenfunctions ofP + βj associated to the first eigenvalue. Starting from the interaction matrix
authors obtain an estimate for the splitting that involves theuj ’s only in a neigbourhood of the minimal geodes
Thanks to hypothesis (H), WKB solutions can be constructed in this region – exactly as for the Schrödinger
– and lead to (1).

The aim of this work is to calculate a splitting in the one dimensional case, when the hypothesis (H) is n
satisfied. We then have to deal with the region{V >E0}, where analogies with the Schrödinger operator canno
made anymore. Actually, the problem comes from the fact that the functionξ �→ p(x, ξ) is not holomorphic at±i
and thus prevents deformations of paths integral in a strip larger than{z ∈ C, |�z|< 1}. For later use, we denot
∆= i[1,+∞[∪ i]−∞,−1], so thatC\∆ is a simply connected domain whereξ �→ p(x, ξ) is holomorphic.

Our strategy is the following: we start with the formula of the splitting in term of theuj ’s, using the interaction
matrix. We prove that the main contribution is given by an integral involving the Fourier transforms of theuj in a
neigbourhood of±i in C\∆. We then have to replace these Fourier transforms by explicit approximations.
approximations can be calculated in the vicinity of{z ∈ C, �z= 0, 1 − 2ε0 � |�z| � 1 − ε0}. Moreover, we can
extend them holomorphically near±i in C\∆, if we make the assumption:
(H3) The set of pointV −1(0)∩ [−x0, x0] is given by±b ∈ ±]0, x0[, andV ′(b) �= 0.

We use these extensions to compute what we call a formal splitting:

Theorem 1.1. The formal splittings(h) of a Klein–Gordon operatorP satisfying(H1), (H2) and (H3) is given by

lim
h→0

s(h)eS/h

h
= C1(V )= 4

|V ′(b)|(2πb)3/2V ′′(x0)1/4
�

(
1

2

)
�(−1), (2)

whereS is the Agmon distance between the two wells,S = d(−x0, x0), and�(s) = ∫
R+ e−uus du for s >−1 and

can be extended.

Remark that the power ofh in the splitting (2) is different from the one obtained in [2] when the assumption
is made, see (1).

To obtain the splitting from (2), one should prove that the Fourier transforms of the eigenfunctionsuj , j = 1,2,
is well approximated by the extensions we have constructed. The lack of holomorphy ofξ �→ p(x, ξ) arises again

In the following, we first study the Fourier transforms of theuj ’s, and then rewrite the splitting to prov
Theorem 1.1. Without loss of generality, we take from now onE0 = 0.

2. Fourier Transforms of the uj

In this section, we concentrate on the Fourier transform of the first eigenfunctionu1 associated to the potenti
well −x0. The symmetry of the problem will give similar results foru2.
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Theorem 2.1. There existsWi a neigbourhood ofi in C\∆, there exists holomorphic functionsψ1 andb1
n, n� 0,

defined inWi , such that the Fourier transform ofu1 can be written:

∀N ∈ N, û1(ξ, h)= h1/4 eiψ1(ξ)/h

(
N∑
n�0

hnb1
n(ξ)+ O

(
hN+1)), (3)

for ξ ∈W ⊂Wi a neigbourhood inC of the segmenti[1− 2ε0,1− ε0], ε0> 0 small.

Proof. Let us recall a result from [2] concerning the exponential decreasing of the eigenfunctionu1:

∀K � R, ∃N ∈ N, ∃C > 0,
∥∥ed1/hu1

∥∥
L2(K)

� Ch−N , h < h0, (4)

whered1 is the Agmon distance to the well−x0 for the operatorP +β1. Moreover, ifK is a compact, that belong
to the connected component of{V < 0} which contains−x0, we can construct a WKB solutionv1 such that∥∥ed1/h

(
u1 − v1)∥∥

L2(K)
= O

(
h∞), i.e., ∀N ∈ N, ∃CN,

∥∥ed1/h
(
u1 − v1)∥∥

L2(K)
� CNhN. (5)

Let ξ ∈W a neigbourhood ofi[1− 2ε0,1 − ε0]. The estimate (4) implies that modulo O(h∞), we can replace
u1 by χu1 in the computation of̂u1, for a cut offχ ∈ C∞

0 ([−b − 2ε,−b − ε]), ε = ε(ε0). Then, (5) allows to
replaceχu1 by its WKB approximationv1. Sincev1 is known explicitly, the method of the stationary phase
gives functionsψ1 andb1

n inW as in (3). Furthermore, we can prove thatψ1 satisfies the so called eiconal equatio

p
(−ψ ′

1(ξ), ξ
)= 0, (6)

and theb1
n’s satisfy some first order differential equations, called transport equations. The assumption (H3)

us to extend holomorphically these functions inWi , by means of (6) and the transport equations.✷
As ξ tends to i, the transport equations give the singularity of theb1

n’s at i:

Proposition 2.2. (i) We haveb1
0(i)= 2(2π)1/4

|V ′(−b)|1/2|V ′′(−x0)|1/8 �= 0.

(ii) For n� 0 there exists holomorphic functions inWi c1
n, continuous ati, such that

b1
0(ξ)− b1

0(i)= c1
0(ξ)

√
ξ − i, (7)

∀n� 1, b1
n(ξ)=

c1
n(ξ)

(ξ − i)n−1/2
. (8)

We have similar results foru2 near−i. We now come to the splitting and Theorem 1.1.

3. Computation of the splitting

In this section, we first prove that the splitting can be written with an expression involving theûj ’s near±i, then
we replace these functions by the extensions given by (3). Letχ̃ ∈ C∞

0 (]−3ε0,3ε0[), χ̃ ≡ 1 in [−2ε0,2ε0], then:

Theorem 3.1. The splittings(h) is given bys(h)= 2w(h)+O(e−(S+ε0)/h), where for anyx ∈ [−x0 + ε0, x0 − ε0],
w(h)= −h

i

1

(2πh)2

∫
Γ 1×Γ 2

eix(ξ+η)/h q(ξ)− q(η)
ξ + η û1(ξ, h)û2(η,h)dξ dη

(
1+ O

(
h∞)). (9)

We have denotedΓ 1 = i − iβh+ [−ε0, ε0] andΓ 2 = −i + iβh+ [−ε0, ε0], for anyβ > 0.



660 E. Servat / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 657–660

ot

is
e

e

mbridge

pplication
Proof. On the one hand, we remark that the definition of theuj ’s implies:

(P + βj )uj = λ(h)uj �⇒ (
P − λ(h))uj = −βjuj = 0 for x ∈ [−x0 + ε0, x0 − ε0]. (10)

Hereλ(h) is the first eigenvalue of bothP + β1(x) andP + β2(x)= P + β1(−x), because of the symmetry ofV .
On the other hand, the splitting is given bys(h)= 2w(h)+ O(e−(S+ε0)/h), wherew(h)= ((P − λ(h))u2, u1)

is the interaction coefficient [3]. Ifq(ξ)=√
1+ ξ2, (10) entails that for anyx ∈ [−x0 + ε0, x0 − ε0],

w(h)= −h
i

1

(2πh)2

∫
Rξ×Rη

eix(ξ+η)/hq(ξ)− q(η)
ξ + η û1(ξ, h)û2(η,h)dξ dη. (11)

We deform the integral pathRξ of (11) in the complex planC and prove that we can replace it by(R + i − iβh)ξ
for anyβ > 0. Indeed, this set is homotopic toRξ in C\∆. Similarly, we replaceRη by (R − i + iβh)η. We finally

write ûj in term ofuj , and use the exponential decreasing of the eigenfunctions ( 4) to find theΓ j ’s in (9). ✷
Remark 1. In higher dimensions, the function(ξ, η) �→ q(ξ)−q(η)

ξ+η is no longer smooth and formula (9) does n
hold. B. Helffer and B. Parisse solve this problem in [2].

We now replace in (9) the Fourier transforms ofuj , j = 1,2, by the explicit formulas (3). Since (9)
independent ofx ∈ [−x0 + ε0, x0 − ε0] andβ > 0, we calculate it forx = 0 andβ = 1

2b . We have to estimat
the integrals:

Ip,q = hp+q
∫

Γ 1×Γ 2

eiψ1(ξ)/h eiψ2(η)/h
q(ξ)− q(η)
ξ + η b1

p(ξ)b
2
q(η)dξ dη. (12)

Because of the holomorphy of the functions in the integralIp,q , we can deformΓ j in C\∆. To calculateI0,0
we prove that we only have to consider the paths:

Γ1: ξ = i − i
h

2b

(
1+ iu− u2), |u| � ε/√h, (13)

Γ2: η= −i − i
h

2b
v±, 0 � v± � ε

h
, wherev± = lim

δ→0+ v ± iδ ∈ C\∆. (14)

ThenI0,0 = (i/2)(h/b)3/2 e−S/hb1
0(i)b

2
0(−i)

∫
Ru×R

+
v

e(1+iu−u2)/2(1+2iu)e−v/2√v
1+iu−u2+v dudv

(
1+ O

(
h1/2

))
.

We can compute the integral in the expression ofI0,0 in term of the� function.

Similarly, we can calculate theIp,q using the expression of thebjn in Proposition 2.2, and obtain th
Theorem 1.1. ✷
Remark 2. Let us mention that theIp,q ’s have the same order of magnitude for all(p, q) ∈ (N∗)2, ash goes to 0.
The scaling in power ofh is thus broken when integrating along theΓ j ’s.
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