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Abstract

This paper is concerned with the extension to the case of a nonuniform discretization of the definition of the Mortar
method. Given a (biorthogonal) non-uniform wavelet space, satisfying a suitable cone (or tree) condition, we con
multiplier space satisfying the requirements for stability and approximation.To cite this article: S. Bertoluzza, A.-S. Piquemal,
C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La méthode de Mortar en ondelettes dans le cas adaptatif.Nous définissons l’extension de la méthode de Mo
en ondelettes dans le cadre d’une discrétisation non-uniforme, et construisons un espace de multiplicateurs, satis
hypothèses d’approximation et de stabilité, associé à des espaces d’ondelettes reliés par une condition de cône.Pour citer cet
article : S. Bertoluzza, A.-S. Piquemal, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Wavelet bases have proven to be particularly well suited to the design of adaptive schemes for the so
partial differential equations. The good localization properties of such bases (both in space and in freque
the consequent norm equivalences in terms of wavelet coefficients allow to use the coefficients themse
criterion for deciding whether refining or de-refining, and the refinement/de-refinement procedure is part
simple. On the other hand, such bases suffer from serious drawbacks, which limit their actual applica
real life scientific computing problems. One of such drawback is the inherent tensorial nature of such bas
considering dimensions�2. To overcome such problem it is then necessary to resort to some form of d
decomposition. The use of wavelet bases in the framework of the mortar domain decomposition method [
been studied in [3,4] in the case of uniform wavelet discretization. The aim of this Note is to extend the s
the case of non-uniform wavelet discretizations under the assumption that the spaces considered satisfy aconetype
condition.

E-mail addresses:silvia.bertoluzza@imati.cnr.it (S. Bertoluzza), piquemal@imati.cnr.it (A.-S. Piquemal).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2003.11.034
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1. The wavelet approximation and multiplier spaces

Here, we work with a couple(Vj )j�j0, and (Ṽj )j�j0 of biorthogonal multiresolution analyses (MRA)
L2([0,1]), [6]. The corresponding compactly supported scaling function bases{φj,k, k = 0, . . . ,2j + 1} and
{φ̃j,k, k = 0, . . . ,2j + 1}, are assumed to be biorthogonal. We assume that for somer > 1, r ′ > 0, one has
φj,k ∈ Hr([0,1]), and φ̃j,l ∈ Hr ′

([0,1]), and the polynomials of degreed − 1 and d̃ − 1 are included inVj0

and Ṽj0 respectively. Finally, we can also suppose that all the scaling functions ofVj vanish at the edges 0 an
1, except one function at each edge:φj,0(0) �= 0 and,φj,2j+1(1) �= 0. The two complement (orwavelet) spaces
Wj and W̃j are defined byWj = (Pj+1 − Pj )Vj+1, and W̃j = (P̃j+1 − P̃j )Ṽj+1, wherePj and P̃j are the
projectors onVj and Ṽj orthogonal toṼj andVj respectively. Following [6], it exists two biorthogonal Rie
bases{ψj,k, k = 0, . . . ,2j − 1}, {ψ̃j,k, k = 0, . . . ,2j − 1} for these spaces, constructed in such a way that at
scalej , only one wavelet does not vanish at the each edge, i.e.,ψj,0(0) �= 0, andψj,2j−1(1) �= 0.

Let nowV 0
j = Vj ∩H 1

0 (0,1)= span{φj,k, k = 1, . . . ,2j }. Following [3], we can construct a biorthogonal spa

Ṽ ∗
j = span{φ̃∗

j,k, k = 1, . . . ,2j } which contains all the polynomials of degreed̃ − 1. As previously, assuming tha

πj andπ̃j are respectively the projectors onV 0
j andṼ ∗

j orthogonal tõV ∗
j andV 0

j , the corresponding wavelet spac

are defined byW0
j = (πj+1 − πj )V

0
j+1, andW̃∗

j = (π̃j+1 − π̃j )Ṽ
∗
j+1.

We next consider a 2-D biorthogonal MRA(Vj , Ṽj )j�j0 of L2(]0,1[2) constructed using tensor produc
of the one dimensional multiresolution analyses, that isVj = Vj ⊗ Vj and Ṽj = Ṽj ⊗ Ṽj . The corresponding
wavelet spacesWj , W̃j , j � j0, are respectively spanned by two families of functions{Ψ ε

j,κ}κ and{Ψ̃ ε
j,κ }κ , with

κ = (k, l),0 � k, l � 2j − 1, ε = 1,2,3, defined by

Ψ 1
j,κ (x, y) = ψj,k(x)ψj,l(y), Ψ 2

j,κ (x, y)= ψj,k(x)φj,l(y), Ψ 3
j,κ (x, y)= φj,k(x)ψj,l (y).

Let now an approximation spaceUJ ⊂ VJ be given, of the form

UJ = Vj0 ⊕
(

J−1⊕
j=j0

Xj

)
,

with {
Xj = span{Ψ ε

j,κ , (ε, κ) = (ε, k, l) ∈ Dj } ⊂ Wj ,

Dj ⊂ {(ε, k, l), ε ∈ {1,2,3}, k, l ∈ {0, . . . ,2j − 1}}.

Definition 1.1.We say that a subspaceUJ ⊆ VJ , satisfies a strong cone condition ifΨ ε
j,κ ∈ Xj impliesΨ ε

m,η ∈ Xm

for all waveletsΨ ε
m,η ∈ Wm with m< j and suppΨ ε

j,κ ∩ suppΨ̃ ε
m,η �= ∅.

To fix the ideas let us construct the multiplier space associated to the edgeγy = {(x,0), x ∈ (0,1)}. The trace
on γy of a funcionu ∈ UJ will have contributions from the following basis functions (the ones not identic
vanishing on the edge): forj0 � j � J − 1

ψj,k(x)ψj,l(0), (1, k, l) ∈ Dj, ψj,k(x)φj,l(0), (2, k, l) ∈ Dj, φj,k(x)ψj,l(0), (3, k, l) ∈ Dj .

Then, the trace space is spanned by functions of the formψj,k(x) andφj,k(x) and can be defined by

Ty(UJ ) = Vj0 + span{ψj,k, j0 � j � J − 1, k ∈ dj } + span{φj,k, j0 � j � J − 1, k ∈ cj },
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wheredj = {k, (1, k,0) ∈ Dj, } ∪ {k, (2, k,0) ∈ Dj, } and cj = {k, (3, k,0) ∈ Dj }. Remark that the function
ψj,k, j0 � j � J − 1, k ∈ dj andφj,k, j0 � j � J − 1, k ∈ cj are in general not linearly independent. W
can however prove the following result [5].

Proposition 1.1.If UJ satisfies a strong cone condition then the trace spaceTy(UJ ) verifies

Ty(UJ ) = Vj0 ⊕ span{ψj,k, j0 � j � J − 1, k ∈ dj }.
Let us now consider the subspaceT 0

y (UJ ) = {u ∈ Ty(UJ ); u(0) = u(1) = 0} ⊂ Ty(UJ ). In particular we are

interested in a basis{hj,k, j0 � j � J − 1, k ∈ dj }, for T 0
y (UJ ), in such a way that

T 0
y (UJ ) = V 0

j0
⊕
(

J−1⊕
j=j0

X0
j

)
, with X0

j = span{hj,k, k ∈ dj }, and ∀k ∈ dj , hj,k⊥Ṽ ∗
j .

Under the assumption thatUJ satisfies the strong cone condition, this holds [5] if, forj0 � j � J − 1, we define
the functionshj,k by

hj,k = ψj,k, k �= 0, k �= 2j − 1,

hj,0 = (Id−πj )
(
ψj,0 − ψj,0(0)

φj,0(0)
φj,0

)
,

hj,2j−1 = (Id−πj )
(
ψj,2j−1 − ψ

j,2j −1(1)

φ
j,2j +1(−1)φj,2j+1

)
.

In addition, it is not difficult to prove the following proposition [5].

Proposition 1.2.The set{hj,k, k = 0, . . . ,2j − 1} constitutes a basis forW0
j .

It is then possible to construct a basis{h̃j,k, k = 0, . . . ,2j − 1} for W∗
j such that the following biorthogonalit

property holds〈hjk, h̃mn〉 = δjmδkn. Moreover, the functions̃hj,k can be constructed in such a way that they h
the same space localization properties as the functionsψ̃j,k . We even havẽhj,k = ψ̃j,k for j0 � j � J − 1, k �= 0
andk �= 2j − 1.

We now define the multiplier spaceMy(UJ ) as the dual of the trace spaceT 0
y (UJ ): My(UJ ) = Ṽ ∗

j0
⊕(⊕J−1

j=j0
X̃∗

j

)
, with X̃∗

j = span{h̃j,k, k ∈ dj }. For such a space it is possible to prove the existence and bounde
of a projection and of a lifting operator, which play a key role in the error estimate for the Mortar method des
in the next section. More precisely we have the following theorem.

Theorem 1.2.Let π̌J :L2(0,1)→ T 0
y (UJ ) be defined for allu ∈ L2(0,1) by

π̌J u = πj0u+
J−1∑
j=j0

∑
k∈dj

〈u, h̃j,k〉hj,k.

Then, for allη ∈ H
1/2
00 (0,1) the bound‖π̌J η‖

H
1/2
00 (0,1)

� ‖η‖
H

1/2
00 (0,1)

holds, and for allη ∈ L2(0,1) and λ ∈
My(UJ ) we have

1∫
0

(η − π̌J η)λ = 0.

Moreover, there exist a liftingLJ :T 0
y (UJ ) → UJ such that for allηh ∈ T 0

y (UJ ) we haveLJ ηh = ηh on γy and
‖LJ ηh‖1,(0,1)2 � ‖ηh‖H1/2

00 (0,1)
.
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2. The non-uniform Mortar wavelet method

Let nowΩ ∈ R
2 be a polygonal domain. We consider a geometrically conforming decomposition ofΩ as the

union ofL subdomainsΩl (l = 1, . . . ,L), of sideΓln = ∂Ωl ∪∂Ωn for simplicity we will assume to be rectangula
Let Σ = ∪Γln. Correspondingly we consider the broken norm‖u‖2

1,∗ =∑
l ‖ul‖2

1,Ωl
. We consider the following

simple problem. Givenf ∈ L2(Ω), find u :Ω → R such that

−-u= f, in Ω, u = 0, on∂Ω. (1)

We now consider the Mortar wavelet method with nonuniform discretization. After identifying (using a su
affine transformation) each sub-domain with the reference square]0,1[2, for each subdomain we consider
wavelet discretization spaceUl

J (with J = J (l)) satisfying the strong cone condition. We can assemble the g
multiplier spaceMδ from the local multiplier spaces defined on the slave sides according to the constr
introduced in the previous section. LettingVδ =∏

l U
l
J we then look for an approximationuδ ∈ Vδ to the solution

u of problem (1) satisfying the weak continuity condition
∫
Σ [uh]λ = 0 for all λ ∈ Mδ ([·] denoting the jump

taken with the proper sign) and such that for allvh ∈ Vδ satisfying the same weak continuity condition one∑
l

∫
Ωl

∇uh · ∇vh = ∫
Ω f vh. It is possible to prove the following error estimate [3,4]:

Theorem 2.1.We have that

‖u− uh‖1,∗ �
(
max

l
J (l)

)(
inf

vh∈Vδ

‖u− vh‖1,∗ + inf
λh∈Mδ

‖∂u∂ν − λh‖−1/2,Σ

)
,

where ∂u/∂ν denotes the trace of the normal derivative on the interfaceΣ taken with the proper sign an
‖ · ‖2−1/2,Σ =∑

l ‖ · ‖2−1/2,∂Ωl
.

We want to underline that, though we did not explicitely prove an error estimate – it is always difficult to for
express the approximation properties of nonuniform approximation spaces, since the multiplier space con
polynomials of degree less or equal tod̃ − 1 and since it has the same localization properties of the trace s
Ty(UJ ), we believe that, assuming that the spaceUJ has been taylored to approximate well the functionu through
a suitable adaptive procedure, we can expect that the multiplier space is itself well suited to the approxim
the outer normal derivative∂u/∂ν.
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