Differential Topology
Braids on surfaces and finite type invariants
Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 157-162.

We prove that there is no functorial universal finite type invariant for braids in Σ×I if the genus of Σ is positive.

Nous démontrons qu'il n'y a pas d'invariant universel fonctoriel de type fini pour les tresses dans Σ×I, lorsque Σ est une surface orientable de genre positif.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.11.014
Bellingeri, Paolo 1; Funar, Louis 2

1 Mathématiques, cc 051, Univ. Montpellier II, place Eugène Bataillon, 34095 Montpellier cedex 5, France
2 Institut Fourier, BP 74, Univ. Grenoble I, Mathématiques, 38402 Saint-Martin-d'Hères cedex, France
@article{CRMATH_2004__338_2_157_0,
     author = {Bellingeri, Paolo and Funar, Louis},
     title = {Braids on surfaces and finite type invariants},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {157--162},
     publisher = {Elsevier},
     volume = {338},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.11.014/}
}
TY  - JOUR
AU  - Bellingeri, Paolo
AU  - Funar, Louis
TI  - Braids on surfaces and finite type invariants
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 157
EP  - 162
VL  - 338
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.11.014/
DO  - 10.1016/j.crma.2003.11.014
LA  - en
ID  - CRMATH_2004__338_2_157_0
ER  - 
%0 Journal Article
%A Bellingeri, Paolo
%A Funar, Louis
%T Braids on surfaces and finite type invariants
%J Comptes Rendus. Mathématique
%D 2004
%P 157-162
%V 338
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.11.014/
%R 10.1016/j.crma.2003.11.014
%G en
%F CRMATH_2004__338_2_157_0
Bellingeri, Paolo; Funar, Louis. Braids on surfaces and finite type invariants. Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 157-162. doi : 10.1016/j.crma.2003.11.014. http://www.numdam.org/articles/10.1016/j.crma.2003.11.014/

[1] Andersen, J.E.; Mattes, J.; Reshetikhin, N. Quantization of the algebra of chord diagrams, Math. Proc. Cambridge Philos. Soc., Volume 124 (1998), pp. 451-467

[2] Bezrukavnikov, R. Koszul DG-algebras arising from configuration spaces, Geom. Fumet. Anal., Volume 4 (1994), pp. 119-135

[3] Bellingeri, P. On presentation of surface braid groups | arXiv

[4] Birman, J. Braids, Links, and Mapping Class Groups, Ann. of Math. Stud., vol. 82, Princeton University Press, Princeton, NJ, 1973

[5] Cohen, F.R.; Kohno, T.; Xicotencatl, M.A. Orbit configuration spaces associated to discrete subgroups of PSL(2,R) | arXiv

[6] Fadell, E.; Neuwirth, L. Configuration spaces, Math. Scand., Volume 10 (1962), pp. 111-118

[7] Garoufalidis, S.; Kricker, A. A rational noncommutative invariant of boundary links | arXiv

[8] González-Meneses, J. New presentations of surface braid groups, J. Knot Theory Ramifications, Volume 10 (2001), pp. 431-451

[9] González-Meneses, J.; Paris, L. Vassiliev invariants for braids on surfaces, Trans. Amer. Math. Soc., Volume 356 (2004), pp. 219-243

[10] Goncalves, D.L.; Guaschi, J. On the structure of surface pure braid groups, J. Pure Appl. Algebra, Volume 182 (2003), pp. 33-64

[11] Hain, R. Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc., Volume 10 (1997), pp. 597-651

[12] Kohno, T.; Oda, T. The lower central series of the pure braid group of an algebraic curve, Adv. Stud. Pure Math., Volume 12 (1987), pp. 201-219

[13] Lambropoulou, S. Braid structures in knot complements, handlebodies and 3-manifolds, Knots in Hellas '98 (Delphi), Ser. Knots Everything, vol. 24, World Sci. Publishing, River Edge, NJ, 2000, pp. 274-289

[14] Le, T.Q.T.; Murakami, J. Representations of the category of tangles by Kontsevich's iterated integrals, Commun. Math. Phys., Volume 168 (1995), pp. 535-563

[15] Nakamura, H.; Takao, N. Galois rigidity of pro-l pure braid groups of algebraic curves, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 1079-1102

[16] Papadima, S. The universal finite-type invariant for braids, with integer coefficients, Topology Appl., Volume 118 (2002), pp. 169-185

[17] Scott, G.P. Braid groups and the group of homeomorphisms of a surface, Math. Proc. Cambridge Philos. Soc., Volume 68 (1970), pp. 605-617

Cited by Sources: