In this article we study the optimal regularity for solutions to the following weakly coupled system with interconnected obstacles
We derive the optimal -regularity for the minimal solution under the assumption that the zero loop set is the closure of its interior. This result is optimal and we provide a counterexample showing that the -regularity does not hold without the assumption .
@article{AIHPC_2016__33_6_1455_0, author = {Aleksanyan, Gohar}, title = {Optimal regularity in the optimal switching problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1455--1471}, publisher = {Elsevier}, volume = {33}, number = {6}, year = {2016}, doi = {10.1016/j.anihpc.2015.06.001}, zbl = {1352.49036}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.001/} }
TY - JOUR AU - Aleksanyan, Gohar TI - Optimal regularity in the optimal switching problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1455 EP - 1471 VL - 33 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.001/ DO - 10.1016/j.anihpc.2015.06.001 LA - en ID - AIHPC_2016__33_6_1455_0 ER -
%0 Journal Article %A Aleksanyan, Gohar %T Optimal regularity in the optimal switching problem %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1455-1471 %V 33 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.001/ %R 10.1016/j.anihpc.2015.06.001 %G en %F AIHPC_2016__33_6_1455_0
Aleksanyan, Gohar. Optimal regularity in the optimal switching problem. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 6, pp. 1455-1471. doi : 10.1016/j.anihpc.2015.06.001. http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.001/
[1] Optimal regularity for the no-sign obstacle problem, Commun. Pure Appl. Math., Volume 66 (2013), pp. 245–262 | Zbl
[2] Nonlinear PDEs for stochastic optimal control with switchings and impulses, Appl. Math. Optim., Volume 14 (1986), pp. 215–227
[3] Adjoint methods for obstacle problems and weakly coupled systems of PDE, ESAIM Control Optim. Calc. Var., Volume 19 (2013), pp. 754–779 | Numdam | Zbl
[4] Optimal stochastic switching and the Dirichlet problem for the Bellman equation, Trans. Am. Math. Soc., Volume 253 (1979), pp. 365–389 | Zbl
[5] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001 (reprint of the 1998 edition) | DOI | Zbl
[6] Systems of weakly coupled Hamilton–Jacobi equations with implicit obstacles, Can. J. Math., Volume 64 (2012), pp. 1289–1309 | Zbl
[7] A system of nonlinear partial differential equations arising in the optimal control of stochastic systems with switching costs, SIAM J. Appl. Math., Volume 43 (1983), pp. 465–475 | Zbl
[8] Regularity of Free Boundaries in Obstacle-Type Problems, American Mathematical Society, Providence, RI, 2012 | DOI | Zbl
[9] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 | Zbl
Cited by Sources: